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ABSTRACT

Traditional microbiology concepts are being renewed since the development of new microbiological 
technologies, such as, sequencing and large-scale genome analysis. Since the entry into the new 
millennium, a lot of new information has emerged regarding the oral microbiome. This revision 
presents an overview of this renewed knowledge on oral microbial community acquisition in the 
newborn and on the evolution of this microbiome to adulthood. Throughout childhood, the oral 
microbial load increases, but the microbial diversity decreases. The initial colonizers are related 
to the type of delivery, personal relationships, and living environment. These first colonizers 
seem to condition the subsequent colonization, which will lead to more complex and stable 
ecosystems in adulthood. These early oral microbial communities, therefore, play a major role in 
the development of the adult oral microbiota and may represent a source of both pathogenic and 
protective microorganisms in a very early stage of human life. The implications of this knowledge 
on the daily clinical practice of odontopediatrics are highlighted.
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INTRODUCTION

The concepts of oral microbiology are in revolution 
since the entry into the new millennium. This 
profound change comes in the light of new 
technologies developed for microbiological analysis 
such as sequencing and large-scale genome analysis. 
Prior to this new era, it was thought that the number 
of microorganisms that colonize the oral cavity was 
around 700 species; today is thought that it may reach 
19,000 phylotypes.[1] These recent studies have shown 
that most oral microorganisms are uncultivable; 
that the oral microbiome is much more diverse 
than previously thought; and that oral infections are 
of a polymicrobial nature.[2-5] The microorganisms 

residing in the oral cavity, and their inevitable inter-
relationships, are essential components in changing 
the balance between health and disease. Thus, 
understanding what constitutes microbial communities 
in health, as opposed to disease, is a crucial goal 
in studying the microbiology of the human mouth, 
the portal of entry to both the gastrointestinal 
and respiratory tracts.[6,7] This revision presents 
an overview of this renewed knowledge on oral 
microbial community acquisition in the newborn and 
on the evolution of this microbiome to adulthood.

Intrauterine life and microbial colonization
At present, the medical community assumes that, in 
normal conditions, intrauterine fetal development 
occurs in an aseptic environment. However, recent 
studies have reported intrauterine environment 
colonization, specifically the amniotic fluid, by 
oral microorganisms, in up to 70% of the pregnant 
women.[8] The cultivable microorganism most often 
found was Fusobacterium nucleatum, a species 
associated with periodontal disease.[9] This data 
further supports the notion that in pregnant women, 
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periodontal disease represents a risk factor for 
preterm birth and low birth weight babies.[10] During 
pregnancy, the bacteria found in the oral cavity may 
reach the amniotic fluid via transient bacteremia, 
especially in the presence of oral diseases such as 
gingivitis or periodontitis. Thus, oral screening and/
or oral treatment should integrate the preconception 
care and oral health maintenance should be a concern 
throughout pregnancy. 

The oral microbiome — from birth to adulthood
During and after birth, the newborn comes in contact 
with a wide variety of microorganisms. Given their 
state of immune tolerance,[11] the newborn may 
be colonized by this initial inoculation. However, 
only a subgroup of these microorganisms is able 
to permanently colonize the subject.[12] The set of 
initial colonizers seems to condition the subsequent 
colonization, which will lead to more complex 
and stable ecosystems in adulthood.[13] These early 
microbial communities, therefore, play a major role in 
the development of the microbiota of the adult body 
and may represent a source of both pathogenic and 
protective microorganisms in a very early stage of 
human life. In the following sections, the evolution 
of oral bacteria, Archaea, fungi, parasitic, and viral 
colonization from birth to adulthood, will be described. 

Oral bacterial colonization
A significant number of the first bacteria colonizing 
the human body are of maternal origin. The type of 
delivery, eutocic or dystocic, may affect the type of 
microorganisms that the newborn is first exposed to. 
Immediately after birth (< five minutes), the bacterial 
communities present in different habitats of the 
newborn (oral, nasopharyngeal, skin, and intestines) 
are very similar to each other.[14] However, babies born 
by vaginal birth have similar bacterial communities 
to the mother’s vaginal bacterial communities; 
predominantly Lactobacillus, Prevotella, and Sneathia 
spp., while babies born by Cesarean section (dystocic) 
have bacterial communities similar to those present 
in the mother’s skin, predominantly Staphylococcus, 
Corynebacterium, and Propionibacterium spp.[14]

At birth and in the subsequent hours, the baby’s mouth 
will be exposed to a large number of microorganisms 
by contact with the outside world through breathing, 
breastfeeding, and contact with parents and medical 
staff. In the postpartum period, it begins the process 
of permanent colonization of the oral cavity. When 
the newborn has only twenty-four hours of life, the 

establishment of the so-called pioneer microorganisms 
in the oral cavity has already begun. At this stage, 
the most frequent colonizers of the oral cavity are 
Gram-positive cocci, including Streptococcus and 
Staphylococcus.[15,16]

The pioneer microorganisms begin to promote the 
change of the environment through the production and 
excretion of products of their metabolism, which often 
potentiate the growth of other species. For example, 
Streptococcus salivarius is most often found in the 
oral cavity of the newborn, since it has the ability 
to adhere to epithelial cells. This species produces 
extracellular polymers from sucrose to which other 
bacteria such as Actinomyces spp., can adhere.[15] 
This process of microbial succession and increasing 
diversity will result in the eventual formation of a 
complex and more stable microbial community.

As the baby grows, the microbial communities also 
evolve. Around five months of age, infants already 
show a distinct oral microbiota from the mother, due 
to environmental exposure that occurs in the first 
months of life, particularly through the ingestion of 
food, contact with other adults and children, contact 
with domestic animals, hygiene habits, and so 
on.[17] This microbiota consists mostly of bacteria, 
including the six phyla: Firmicutes, Proteobacteria, 
Actinobacteria, Bacteroidetes, Fusobacteria, 
and Spirochaetes. The most prevalent genera 
are Streptococcus, Haemophilus, Neisseria, and 
Veillonella.[17] Many of these microorganisms, such 
as S. mitis or S. oralis, produce immunoglobulin A 
(IgA) proteases that specifically degrade the secreted 
salivary IgA. It is speculated that this feature is an 
advantage for the survival of these species in an IgA-
rich environment, which is secreted from the breast 
milk.[18] Interestingly, in this phase, although the 
infants show fewer oral microorganisms than their 
parents, they have a greater microbial diversity.[17]

With the eruption of the first teeth, a new ecological 
event takes place in the oral environment, with the 
emergence of new adhesion surfaces. It was thought 
that some cariogenic Streptococcus species, such as 
S. mutans, only began their colonization at this stage, 
due to the fact that their preferable adhesion surfaces 
are the teeth. This phase was named by Caufield et al. 
as the, ‘window of infectivity’.[19] However, recent 
studies have demonstrated the presence of this species 
in edentulous children, suggesting that soft tissues 
may play the role of a reservoir for oral pathogenic 
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microorganisms.[17,20] This highlights the importance 
of oral hygiene practice in the baby, even before tooth 
eruption.

At three years of age, the salivary microbiome is 
already complex, but its maturation process continues 
until adulthood.[21] The children’s oral microbiota 
varies throughout the development of teeth; deciduous, 
mixed or permanent dentition. The oral microbiota 
of children with primary dentition in relation to other 
groups has a higher prevalence of bacteria belonging 
to the class Gammaproteobacteria, particularly the 
families of Pseudomonaceae (genus Pseudomonas), 
Moraxellaceae (genera Acinetobacter, Moraxella, and 
Enhydrobacter), Enterobacteriaceae and Pasteurellaceae 
(genus Aggregatibacter).[21] As the dentition evolves 
from deciduous to permanent, the population of the 
bacteria belonging to the Veillonellaceae family (genus 
Veillonella and Selenomonas) and the genus Prevotella 
increases, while the bacteria of the Carnobacteriaceae 
family (genus Granulicatella) decreases.[21]

The emergence of teeth in the oral habitat leads to a 
major worldwide health problem, that is, dental caries. 
According to the Surgeon General’s report on oral health 
in America, published in May 2000, dental caries is the 
most common chronic childhood disease.[22] The Global 
Oral Data Bank of the World Health Organization 
(WHO) reports that, at 12 years of age, 70 to 85% of the 
population has or had carious lesions.[23] Recent studies 
evaluating the oral microbial population in children aged 
three to twelve years, suggest that the entire population 
of the tooth-bound bacteria, and not just a small 
number of specific pathogenic bacteria, influences the 
development of caries.[3,20,24-27] Aas et al.,[24] showed that 
10% of the children and young adults (aged between two 
and twenty-one years) with dental caries did not have 
detectable levels of S. mutans, and also suggested the 
involvement of other bacterial species in the development 
and progression of dental caries, such as, Lactobacillus, 
Veillonella, Bifidobacterium, Propionibacterium, 
acidogenic non-mutans Streptococci (S. gordonii, 
S.  oralis, S. Mitis, and S. anginosus[28]), Actinomyces, 
and Atopobium, thus revealing the polymicrobial nature 
of this infectious disease. More specifically, in white-
spot lesions, the proportion of S. mutans found in the 
plaque associated with the lesion was often higher 
than in clinically healthy sites, although still quite low, 
ranging between 0.001 and 10%.[29] The non-mutans, 
Streptococci and Actinomyces, represented the major 
groups of bacteria in the enamel lesions. In fact, it was 
seen that in the absence of S. mutans and Lactobacillus, 

the initial demineralization of the enamel could be 
induced by the early colonizers alone (S. sanguinis, 
S. Mitis, and S. oralis).[3,30,31] In cavitated lesions reaching 
the dentin, S. mutans constituted about 30% of the total 
microbiota, indicating that these species were associated 
with advanced stages of decay. However, S. mutans were 
less prevalent in the progress area of dental caries, where 
species of Lactobacillus, Bifidobacterium, and Prevotella 
prevailed.[3,24,30,32-35] Studies evaluating the microbiota 
associated with early childhood caries, in particular, found 
the genera of Streptococcus, Veillonella, Actinomyces, 
Propionibacterium, Granulicatella, Leptotrichia, 
Thiomonas, Bifidobacterium, and Atopobium, suggesting 
that there was not a single pathogen, but a pathogenic 
population that correlated with the development of early 
childhood caries. It is worth reinforcing that it is not the 
genotype of bacteria per se, but the phenotype adopted 
in a particular environment, that is, the acidogenic and 
aciduric potential of the microorganism, that may induce 
an environmental shift leading to dental caries.[24,36-38]

With regard to health, children’s oral cavities have 
a higher proportion of bacteria from the phyla 
Firmicutes (genus Streptococcus, Veillonella, 
Lactobacillus, and Granulicatella) and Actinobacteria 
(Rothia and Actinomyces genera), and a smaller 
proportion of bacteria from the phyla Bacteroidetes 
(genus Prevotella and order Bacteroidales), 
Fusobacteria (genus Fusobacterium), Spirochaetes, 
and candidate division TM7, in comparison to 
adults.[21] Interestingly, as the child grows the 
proportion of periopathogenic bacteria increase. There 
is a change in the bacterial population from aerobic or 
facultative gram-positive cocci to anaerobic fastidious 
gram-negative bacteria.[39]

Puberty is a time of major hormonal changes, which 
is accompanied by nutritional enrichment of the oral 
environment. Commonly, this phenomenon leads to 
an increase in some groups of oral microorganisms, 
including gram-negative anaerobes and spirochetes.[40] 
This change in the oral microbiota may be associated 
with the increased incidence and severity of gingivitis 
during puberty.[41] 

It is also important to note that the oral microbiome 
may play a role in the development of oral and systemic 
pathology. For example, the increased consumption of 
fermentable carbohydrates can induce a change, with 
the oral microbiota favoring the growth of aciduric and 
acidogenic species, allowing the development of dental 
caries, as previously described.[30] Also, an association 
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between oral microorganisms and cancer has been 
suggested relatively recently.[42-44] The major mechanism 
associated is hypothesized to be a chronic oral infection-
based carcinogenesis, being a subjacent inflammation 
process and the key feature.[45-48] In accordance, poor 
oral health and dental care, tooth loss, and a history 
of periodontitis are considered risk factors for cancer 
development in the oral cavity or other body sites.[49-59] 
In addition, several oral microorganisms, including the 
commonly encountered oral Streptococci (and yeasts), 
possess metabolic pathways for the conversion of alcohol 
to carcinogenic acetaldehyde.[60-64] Similarly, smoking also 
causes an increase in salivary acetaldehyde concentrations, 
hence adding to the risk related to alcohol,[65] thus making 
the effects of smoking and alcohol consumption on cancer 
development synergistic.[66] Virus, are also recognized 
etiological agents of cancer; the Human Papilloma Virus 
(HPV) being of particular relevance in the oral cavity, as 
mentioned a little later in the text, in the chapter on oral 
virus colonization.[67]

The placement of intraoral biomaterials, such as dental 
prostheses or orthodontic appliances, may also induce 
alterations in the oral microbiome.[68-70] Nowadays, 
orthodontic treatment is a frequent procedure in children 
for correction of malocclusion and for the improvement 
of mastication, speech, and appearance, as well as for 
overall health, comfort, and self-esteem.[71] However, 
orthodontic treatment is being associated with a higher 
risk of caries development or exacerbation of any pre-
existing periodontal disease.[72-80] Fixed and removable 
orthodontic appliances, namely brackets, bands, and 
space maintainers, may frequently cause enamel 
demineralization, gingival inflammation, and increase 
in periodontal pocket depth.[74,76,78,79,81-83] These can 
be explained by the increase in plaque accumulation 
due to a higher number of plaque-retentive sites and 
impaired mechanical plaque or food residue removal, 
as well as, by mechanical or chemical irritation due 
to exposed cement.[83-85] Furthermore, it has been 
observed that the surface physicochemical properties 
of the orthodontic devices, such as, surface roughness, 
hydrophobicity, and elemental composition can influence 
bacterial attachment, plaque retaining capacity, microbial 
diversity, microorganism interaction, as well as, the 
biofilm matrix.[73,86-88] As an example, two recent studies 
evidenced the virulence modulation of Streptococcus 
mutans and Candida albicans biofilms by the metal ions 
released from orthodontic appliances.[89,90]

Sukontapatipark et al.,[91] in a time-dependent scanning 
electron microscopy (SEM) study on dental plaque 

adjacent to orthodontic brackets showed that the early 
stage of plaque formation began in the first week after 
the appliances were placed. Although most studies 
available do not compare oral microbiota before and 
after orthodontic treatment, the high concentrations 
of cariogenic microorganisms in the plaque and 
saliva of children with orthodontic devices,[92] namely 
Streptococcus mutans and S. sobrinus,[93,94] is being 
associated with recurrent enamel decalcification and 
white spot lesion formation in patients treated with 
fixed orthodontic appliances.[95-98]

In 2006, Naranjo et al.,[78] reported an increase in the 
Porphyromonas gingivalis, Prevotella intermedia, 
Prevotella nigrescens, Tannerella forsythia, and 
Fusobacterium species after bracket placement. 
In accordance with this, in a recent study by 
Andrucioli et al.,[93] using the checkerboard DNA–
DNA hybridization technique, the bacterial species 
of the orange complex (namely P. intermedia, P. 
melaninogenica, P. nigrescens, S. noxia, F. nucleatum 
sp nucleatum, F. nucleatum sp vincentii, F. nucleatum 
sp polymorphum, F. periodonticum, Campylobacter 
gracilis, C. rectus, C. Showae, and C. ochracea) were 
the most prevalent on metallic brackets, representing 
40% of the total bacterial counts, followed by 
Veillonella parvula, representing 22% of the total 
bacterial counts. These microorganisms may be 
associated with the enhanced gingival inflammation 
observed in these patients. Some studies reported 
that removable devices show less plaque formation in 
relation to fixed orthodontic appliances.[99,100]

Considering the wide array of bacterial species 
found on orthodontic appliances in vivo, further 
studies are needed to guide the establishment of 
preventive clinical protocols that can be effective in 
controlling microbial contamination and preventing 
the development of bacteremias and pathologies, 
such as dental caries and periodontal disease, during 
orthodontic treatment.[93] Furthermore, oral health 
education supported by supplementary materials 
(brochures, paintings, etc.) for both children and 
parents are strongly recommended.[99]

Furthermore, it is of interest to emphasize that 
systemic changes in the overall host’s health status 
can also influence the composition of the oral 
microbiome and the host’s oral health.[101]

Oral Archaea colonization
Archaea represent a small minority of the oral 
microbiome, which are restricted to a small number 
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of methanogenic species/phylotypes, namely, 
Methanobrevibacter oralis, Methanobacterium curvum/
congolense, and Methanosarcina mazei.[102,103] Archaea 
can be detected in healthy individuals, but its prevalence 
seems to increase in subjects with periodontitis. However, 
studies with these microorganisms are very scarce.

Oral fungal colonization
The oral cavity of newborns may be colonized 
by yeasts, specifically Candida, on their first day 
of life; and during the first year, the rate of oral 
colonization by Candida may vary between 40 and 
82%.[104-106] However, in older children the frequency of 
colonization decreases to values between 3 and 36%.[106] 
These variations in the frequency of oral Candida 
colonization in children may be due to the physiological 
factors related to age, namely immune maturation, as 
well as other factors such as environmental changes 
(hospital vs. home) and diet alterations (breastfeeding 
vs. formula feeding).[104,107-109] After infancy, the 
prevalence of oral Candida colonization gradually 
increases until old age, reaching up to 75% in healthy 
subjects.[106,107,110,111] Although C. albicans is the most 
frequently detected fungi in the oral cavity of healthy 
children, the species C. parapsilosis has also gained 
some importance.[106-108,112,113] 

For a long time, yeast Candida was the only fungus 
recognized as part of the normal oral microbial 
population, despite its opportunistic character.[114] 
However, in 2010, a metagenomic study identified 
74 genera of cultivable fungi and 11 uncultivable 
ones in the oral cavity of healthy adults. Although 
Candida was the most frequent genus isolated in 
75% of the subjects, other fungi groups presented a 
relevant prevalence, such as, Cladosporium (65%), 
Aureobasidium (50%), Saccharomycetales (50%), 
Aspergillus (35%), Fusarium (30%), and 
Cryptococcus (20%). However, the role of this oral 
mycobiome and its identification in the children’s oral 
cavity is yet to be explored.[110] More recently, using 
improved culture techniques, it was demonstrated 
that a group of healthy young adults show 100% 
growth of filamentous fungi in their saliva and 92.5% 
showed growth of yeast, especially belonging to the 
genus Candida.[115] In this study, the most prevalent 
filamentous fungi identified were Penicillium sp., 
Aspergillus sp., and Cladosporium sp. Interestingly, 
the individual profile of fungal colonization was 
maintained over a six-month period, which might 
question the assumption that the presence of these 
fungi in the oral cavity represented only a transient 

colonization.[115] However, the role of this oral 
‘mycobiome’ in adults and their identification in the 
oral cavity of children remains unexploited.

Oral parasitic colonization
Compared to other groups of microorganisms, few 
parasites colonize the oral cavity, although several 
recent studies have revealed that the protozoa 
are more frequent than previously thought.[116,117] 
Notwithstanding, its prevalence may vary significantly 
with the worldwide geographic distribution, ranging 
from 4 to 53%.[116] Within oral parasites, the protozoan 
Entamoeba gingivalis and Trichomonas tenax are 
the most frequent and are normally non-pathogenic 
commensal microorganisms. Although their oral 
colonization is associated with poor oral hygiene and 
a low socioeconomic status, these protozoa can also 
be found in caries-free children and adolescents.[117-119] 
The protozoa’s rate of colonization increases with 
age, being more frequent in children aged between 
11 and 19 years than in younger children.[116] 
However, protozoa are much more prevalent 
in adults, particularly in those with periodontal 
disease.[116] It is interesting to note that both protozoa 
can occur simultaneously, but the rate of colonization 
of E. gingivalis appears to increase more rapidly with 
age in relation to that of T. tenax.[119] 

Oral viral colonization
The complexity of the human virome and its 
relationship with the host’s health is not yet 
completely understood. The recent studies of Pride 
et al.,[120] show that there is a persistent community of 
double-stranded DNA viruses in the saliva of healthy 
human subjects, almost exclusively identified as 
bacteriophages. This finding is not surprising, taking 
into account the massive oral bacterial community. 
The fact that the vast majority of human oral viruses 
are bacteriophages, which play a prominent role in 
lysogeny, suggests that these viruses may play an 
important role in regulation of the microbial diversity 
of the human oral cavity.[120] However, salivary virus 
may serve as reservoirs of pathogenic gene function 
in the human oral environment.[120]

Other viruses associated with human disease may also 
be found in the oral cavity; however, their presence is 
primarily viewed as a pathological state. The course 
of viral diseases in children differs from adults due to 
the incomplete maturation of the immune system.[121] 
In children, unlike adults, the severity of symptoms is 
related to the age at which the infection was acquired. 
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Several viral agents can infect oral cells, however, 
only a few cause clinical alterations. Some examples 
include: Herpes simplex virus-1 (HSV-1) and HSV-2, 
which cause herpetic gingivostomatitis, orofacial 
herpes, and aphthous stomatitis; the Coxsackie A 
virus, which causes herpangina and hand, foot, and 
mouth disease; the Morbilli virus that causes measles; 
the Rubulavirus that causes mumps; and the human 
papilloma virus that causes oral papilloma (warts).[121] 

The microbiome on different oral habitats
The oral microbiome is one of the most complex 
microbiome of the human body.[122] Its complexity 
results from a variety of oral habitats that comprise 
the oral cavity. These different oral habitats vary 
in relation to oxygen tension, nutrient availability, 
temperature, and host immunological factor 
exposure, due to their anatomical and physiological 
characteristics.[20,123] Most oral microorganisms 
colonize all oral habitats, including the mucosa, the 
tongue, and the teeth, however, their proportion 
may differ depending on the colonization site. In 
comparison to the oral mucosa and saliva, the teeth 
and tongue present a higher microbial load.[20]

With respect to microorganism distribution, the 
genus Streptococcus is present in a high proportion 
in the soft tissue, saliva, tongue, and supragingival 
area. The species S. mitis and S. oralis are found 
in high proportions in soft tissues, and the species 
S. salivarius is found in greater proportions in the 
saliva, soft tissues, and tongue.[20] Species of the 
genus Actinomyces are detected more frequently in 
the supra- and subgingival samples. Gram-negative 
bacilli are found in the subgingival tooth surfaces and 
also in the tongue fissures. The species Lactobacillus 
acidophilus is found in low proportions in all oral 
habitats, except in the tongue, where their proportion 
may be higher. Other bacteria such as Veillonella 
parvula and Neisseria mucosa, common colonizers 
of the oral cavity, are relatively abundant in all oral 
habitats.[20] It should be noted, however, that these 
proportions may change in case of oral pathology.

Saliva collects the released microorganisms working 
as a transition fluid, whereas, the dorsum of the 
tongue acts as a reservoir for several microorganisms, 
which will later fill other niches in the sub- and 
supragingival tooth surfaces.[20] In children, the 
colonization of oral epithelial cells appears to 
decrease with age,[124] perhaps due to improved oral 
hygiene habits or to the maturation of the immune 

system, given that during childhood, the levels of 
secreted IgA increase progressively.[125] One of the 
most dramatic results of the interactions between 
certain oral bacteria and epithelial cells is the 
internalization of microorganisms within the host 
cell. This is an active process, driven by the bacteria, 
where the signal transduction pathways of epithelial 
cells, which are otherwise non-phagocytic, are 
subverted to induce the entry of bacteria.[6] Epithelial 
cells can be infected not only by isolated strains, but 
also by complex consortia of bacteria, as exemplified 
by the consortium constituted by Aggregatibacter 
actinomycetemcomitans, Porphyromonas gingivalis, 
and Tannerella forsythia.[126] The intracellular 
colonization has several advantages for the 
microorganisms, including protection against action 
of the humoral immune system and the action of 
many antibiotics. 

The discovery that other oral habitats rather than teeth 
have relevant microbial colonization emphasizes that 
when the dentist designs a preventive approach he 
should take into account the oral cavity as a whole.

Routes of transmission of oral microorganisms
Oral microorganisms may have different origins. Studies 
that have focused on the phenotypic and genotypic 
characteristics of oral microorganisms suggest that the 
mother’s or the primary caregiver’s oral microbiota 
represent one of the most important sources of infants’ 
and young children’s oral microbiota.[39,127,128] A good 
example of vertical transmission is the transmission 
of the mother’s vaginal C. albicans to ~80% of their 
vaginally delivered newborns.[129] Also, recent studies 
have shown that breast milk has a specific microbiome 
that varies throughout lactation.[130-132] Bacterial 
communities of milk typically include oral bacteria 
such as those belonging to the genera Veillonella, 
Prevotella, and Leptotrichia, suggesting that 
breastfeeding may represent a significant source of oral 
microorganisms. Moreover, 30 to 60% of the parents of 
children colonized with S. mutans and Aggregatibacter 
actinomycetemcomitans, important oral pathogens, 
presented identical bacteria genotypes.[133-135] Although 
the research on the transmission of cariogenic and 
periopathogenic microorganisms is scarce and limited to 
a few agents, most experts agree that early transmission 
is a risk factor for disease.[136,137] Thus, the prevention 
of oral colonization by pathogenic microorganisms in 
children should start with the prevention / treatment of 
the caregiver’s oral cavity.
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However, it is known that the oral transmission 
of microorganisms can occur not only by vertical 
transmission, but also horizontally, between brothers 
and/or colleagues.[138,139] This is particularly important if 
we take into account the socioeconomic changes taking 
place in the last two to three decades in the Western 
culture. The children that are under the care of a nanny 
or in contact with other children in a day care center 
present additional vectors for oral microorganism 
acquisition. The genotyping of Streptococcus mutans 
in children aged between 12 to 30 months, attending 
a day care center, revealed that 29% of the children 
had two or more corresponding genotypes, strongly 
suggesting the occurrence of horizontal transmission 
within this population.[140] It is interesting to note that 
those children attending day care centers present a 
lower level of their mothers’ S. mutans genotypes in 
comparison to children staying with their moms’.[141,142]

In addition to the microbial route of transmission, the 
host genetic factors may also influence the proportion 
of species in genetically related individuals. In 
twins, it was demonstrated that the oral microbiota 
is more alike than in non-related persons.[143] Despite 
these intrafamilial similarities, the oral microbiota 
of children is unique and differs significantly from 
their parents and siblings, from an early age.[21] These 
findings support the possibility of using the oral 
microbiota as a fingerprint. 

CONCLUSION

Throughout childhood the oral microbiome changes, 
maturates, and evolves. Along with the growth of 
the child, the oral microbial load increases, but 
the microbial diversity decreases. The type of first 
colonizers is related to different factors, such as, type 
of delivery, personal relationships, living environment, 
and so on. However, the set of initial oral colonizers 
seems to condition the subsequent colonization, 
which leads to more complex and stable ecosystems 
in adulthood. Therefore, these early microbial 
communities play a major role in the development 
of the microbiota in the adult oral cavity and may 
represent a source of both pathogenic and protective 
microorganisms at a very early stage of human life. 
Thus, the paediatric oral health care and prevention 
should start as early as its conception. The discovery 
that other oral habitats rather than teeth have relevant 
microbial colonization emphasizes the fact that when 
the dentist designs a preventive approach, he should 

take into account the oral cavity as a whole. Given 
that the child’s family members, caregivers, and 
colleagues may represent an important source of oral 
microorganisms, the prevention of oral colonization 
by pathogenic microorganisms in children should 
start with the prevention/treatment of the life-sharing 
individuals’ oral cavity. 
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