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INTRODUCTION

Immediate loading in dental implants has been 
become more popular due to patients’ demand 
of having teeth in the period of osseointegration. 
Immediate loading is defined as restoration of implant 
with fixed functional interim prosthesis at the time of 
implant insertion up to 48 hours later.[1]

There are some essential prerequisites for the 
possibility of immediate loading:  (1) selection of an 
implant system with great primary stability,  (2) high 
bone implant surface contact,[2] and  (3) reduction of 
micro‑motion to <100 µm.[3]

Implant primary stability is a mechanical fact, defined 
as the absence of clinical mobility at the time of 
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ABSTRACT

Background: Primary stability is one of the prerequisites of immediate loading. The aim of this 
study was to compare the primary stability of four different implant systems in low‑density bone 
models.
Materials and Methods: In this in vitro experimental study, 20 fixtures from four implant body 
designs were selected: Zimmer Tapered Screw‑Vent (ZTSV), NobleReplace Tapered (NRT), Replace 
Select Tapered (RST), and Dentium SuperLine (DSL). Fixtures were inserted in low‑density bone 
models according to manufacturer drilling protocol by one surgeon. Measurement of insertion 
torque value (ITV), resonance frequency analysis  (implant stability quotient [ISQ]), and reverse 
torque value (RTV) was recorded for each fixture. The data were analyzed with one‑way ANOVA 
and post hoc tests (Tukey honestly significant difference) (P < 0.05).
Results: ZTSV had significantly lower amount of insertion torque in comparison to other 
systems (P = 0.045). RTV was significantly lower in ZTSV in comparison to DSL and NRT (P = 0.004). 
ISQ value in NRT (ISQ = 67) was significantly higher than other systems (P = 0.000). The lowest 
amount of ISQ was in RST system (ISQ = 53) with significant difference (P = 0.000).
Conclusion: This study demonstrated that primary stability of different implant systems was not 
comparable and implant design was effective on ITV, RTV, and ISQ.
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insertion, and has an important role on immediate 
loading success because instability leads to fibrous 
encapsulation and implant failure.[4]

Primary stability is related to implant design, 
method of implant insertion, quality and quantity 
of surrounding bone.[4] Some surgical methods 
are suggested to increase primary stability such 
as bicortical implant placement,[5] under‑sized bed 
preparation,[6] and bone compression technique.[7] 
Some implant designs result in more stability such 
as conical fixtures[8] and wide diameter implants.[9] 
High‑density bone provides more stability and in case 
of low‑density bone, exact selection of implant design 
and surgical protocol is more important.[10]

Methods of evaluation of implant stability are 
classified to invasive and noninvasive. Invasive 
techniques include histological analysis  (evaluation 
of bone‑implant contact in specimen), removal torque 
analysis, tensional and push out, pull out test. These 
methods are limited to nonclinical experimental 
because of ethical concerns. Noninvasive methods 
are surgeon’s perception, radiographic analysis, 
cutting torque resistance, insertion or seating torque 
measurement, vibration test, percussion test, pulsed 
oscillation waveform, periotest, resonance frequency 
analysis (RFA), and magnetic technology.[11]

To achieve the proper primary stability, bone quality 
has an important role, which is not changeable. 
Surgical methods of increasing stability are successful 
in some extent although they are not feasible in 
all cases and they require surgeon experience and 
dexterity. It seems that the most promising and 
logical way for getting higher stability in weak 
bone is to choose appropriate implant design.[10] 
The purpose of this study was to compare primary 
stability of four different popular implant designs, 
which are recommended by their companies for 
immediate loading. Primary stability in each design 
was determined through measuring insertion torque 
value  (ITV), RFA and reverse torque value  (RTV). 
It is hypothesized that primary stability of all of the 
implants would be equal.

MATERIALS AND METHODS

In this in  vitro experimental, 20 dental implant with 
four different designs were selected. The sample size 
was determined at least five sample in each group 
according to Lachmann et  al. study[12] by Minitab 
software, with α = 0.05 and β = 0.2 and standard 

deviation of 4.4. Selected dental implants were the 
factory recommended type for immediate loading: 
Zimmer Tapered Screw‑Vent  (ZTSV), Noble Replace 
Tapered  (NRT), Replace Select Tapered  (RST), and 
Dentium Super Line  (DSL). Implant features are 
shown in Table 1.

Polyurethane blocks  (General Plastics manufacture 
Co, WA, USA) with density of 0.3 cm3/g was chose 
for bone model, which is categorized as low‑density 
type according to ASTM F1839  (American Society 
for Testing and Materials).[13] This density is similar 
to type  D4 of Lekholm classification and simulate 
thin layer of cortical bone surrounding a core of 
low‑density trabecular bone.[14] Five polyurethane 
blocks were prepared in size of 40  mm in length, 
30  mm in width, and 30  mm in height and divided 
into 4 equal rectangular. The center of each 
rectangular was the insertion place of each implant, 
and therefore, four type of implant were inserted in 
each blocks [Figure 1].

All the fixtures were inserted according to the 
manufacturer’s protocol by one expert clinician.

The ITV was measured with connecting torque 
meter probe to superior part of fixtures to seat 
in prepared socket. Then, Osstell Mentor device 
(Osstell, Integration Diagnostic AB, GoteborgSvagen, 
Sweden) was used to measure the implant stability 
in implant stability quotient  (ISQ). The appropriate 
smart peg of the instrument was selected according to 
company catalog in relation to size and type of implant 
and attached to fixture, to determine the primary 
stability of each implant according to the RFA values.

Then, the least RTV needed for unscrewing the fixture 
was measured with torque meter  (TQ 8800, Lutron 
Electronic Enterprise CO, Taipei, Taiwan) [Figure 2].

Data analysis was done with SPSS (SPSS for Windows 
Inc. Version  22. Chicago, Illinois, IBM Corporation, 
USA). Normality of data was proved according to 
Kolmogorov–Smirnov analysis. One‑way ANOVA 
was used to compare data in each group. Multiple 
comparison was done with post hoc test  (Tukey 
honestly significant difference  [HSD] type). P  < 0.05 
was considered as statistically significant.

RESULTS

The mean, maximum, minimum, and standard 
deviation of variables of each group is summarized in 
Table 2.
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Evaluation of the ISQ, ITV, and RTV in different groups 
by one‑way ANOVA test revealed that the study groups 
were different in terms of each variable (P < 0.0001).

According  to post hoc analysis  (Tukey HSD), the 
lowest amount of ISQ was in RRST with significant 
difference  (P  =  0.000). ISQ of ZTSV and DSL was 
equal, and the highest amount of ISQ was in NRT 
with significant difference with others (P = 0.000).

ZTSV had the lowest ITV with significant difference 
with other systems  (P  =  0.045). The ITV between 
other systems had no significant difference.

According to post hoc analysis, ZTSV had the lowest 
RTV, and the difference was significant  (P  =  0.004) 
with DSL and NRT implant. The RTV between other 
systems had no significant difference.

The multiple comparison of systems is shown in 
Figure 3.

DISCUSSION

Based on the result, the study hypotheses are rejected, 
and primary stability of different implant systems was 
not equal.

Table 1: Features of implants used in the study groups
Implant system Features Thread 

geometry
Diameter 

(mm)
Length 
(mm)

Thread 
depth (mm)

Implant 
shape

Zimmer Tapered Screw‑Vent (Zimmer, United States) Tapered Screw‑Vent V‑shape 4.1 13 0.36

Nobel Replace Tapered (Noble Biocare, Switzerland) Tapered Square 4.3 13 0.42

Replace Select Tapered (Noble Biocare, Switzerland) Tapered Square 4.3 13 0.42

Dentium Super Line (Dentium, South Korea) Double thread Reverse buttress 4.5 12 0.45

Figure 1: Prepared polyurethane block to place four types of 
implant.

Table 2: Amount of resonance frequency analysis 
(implant stability quotient), insertion torque (N/Cm), 
and reverse torque (N/Cm) value in study groups
Implant Minimum Maximum Mean SD
Zimmer Tapered Screw‑Vent

RFA 60.00 64.00 61.80 1.48
Insertion torque 8.50 10.00 9.04 0.59
Reverse torque 6.60 8.50 7.72 0.74

Nobel Replace™ Tapered
RFA 66.00 69.00 67.00 1.41
Insertion torque 11.00 18.30 14.86 2.86
Reverse torque 10.60 16.30 12.34 2.29

Replace™ Select Tapered
RFA 52.00 56.00 53.40 1.67
Insertion torque 10.20 15.00 12.88 2.13
Reverse torque 8.60 12.00 10.22 1.34

Dentium Super Line
RFA 62.00 66.00 64.00 1.58
Insertion torque 11.00 25.60 19.00 5.67
Reverse torque 9.70 15.80 12.40 2.30

RFA: Resonance frequency analysis; SD: Standard deviation

Figure 2: Measuring insertion torque value (a), resonance 
frequency analysis value (b), reverse torque value (c).

cba
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Primary  stability is one of the prerequisites of 
immediate loading. It is proved that high primary 
stability decreases micromotion, bone resorption, 
and fibrous formation.[10] The main purpose of 
measuring the primary stability is to evaluate the 
micromotion.[15] Micromotion in D1 and D2 is less 
and primary stability could be easily achievable but 
in D3 and D4 bone, reaching to primary stability is 
difficult.[16] In this study, primary stability of four 
implant designs in D4 bone model is evaluated 
because in this bone quality, implant design seems to 
be more critical[10] and the purpose is to evaluate that 
in compromised situation, which implant design could 
be more efficient.

Implant macroscopic features have great role in 
primary stability. Fixtures with more length provide 
more stability. It is proved that primary stability is in 
risk in fixture lengths  <10  mm and length more than 
15 mm does not benefit more stability.[17] Furthermore, 
more thread depth and width increase functional 
surface and stability.[18] Taper implants provide more 
stability than cylindrical form and are recommended 
to use in immediate loading[19] and when the use 
of short implants is necessary.[20] Although implant 
surface characteristic has no direct effect on primary 
stability, it improves bone healing and reduces micro 
movement because of coarse and bioactive surface, 
which could be effective on secondary stability.[19,21] 
In the present study, four popular implant designs, 
which are the companies recommended types for 
immediate loading, were selected. They contained 
similar features such as taper body form, length of 12 
or 13 mm and regular diameters.

In this study, ISQ amount was in following sequence: 
NRT > ZTSV = DSL > RRST. ISQ was significantly 
higher in NRT system in comparison to other 
systems (mean = 67). Probably, it is related to double 

groovy  (double thread) design, square form thread, 
with 0.42  mm depth and 0.7  mm width of threads, 
which increase functional surface and bone contact.[18] 
This result is in line with Ostman[22] Meredith[23] and 
Friberg et  al.[24] studies, which showed the effect of 
macro design on ISQ value.

ISQ value in ZTSV  (mean  =  61.8) and 
DSL  (mean  =  64) had no significant difference. 
In ZTSV system, thread form was V shape and in 
DSL system, fixture had double thread design and 
reverse buttress form. The reason of the same ISQ 
versus these design difference could be related to 
more number of threads in each unit of surface in 
ZTSV implant, which increase functional surface 
and bone contact. In addition, DSL implant 
contains self‑cutting blade in half‑epical part, 
which increases ease of insertion but decrease ISQ 
value. This result is compatible with Kim  et  al.[25] 
that showed ISQ is higher in nonself‑cutting blade 
implants.

ISQ value in RST system was significantly lower in 
comparison to other systems. It could be results of 
lacking of some specific macro design for increasing 
functional surface such as double thread or large 
number threads per unit.

Although some studies showed, that ISQ is a 
good evaluation of primary stability for immediate 
loading,[26,27] some studies mentioned that single time 
ISQ evaluation is not a proper determinant of stability 
and success of implant.[28,29] ISQ shows amount of 
lateral stiffness and could not demonstrate the actual 
implant micromotion. Micromotion should be limited 
to <50–100 micron unless fibrous formation and bone 
loss would happen around implant.[15,29] However, it is 
proved that there is a significant correlation between 
ISQ and micromotion.[29] It is reported that ISQ is 
more reliable in high‑density bone and not trustworthy 
in poor quality bone (D3, D4).[30]

It is claimed that ISQ should be analyzed for each 
system over the time and ISQ is not reliable indicator 
for comparison of several systems during loading in 
polyurethane block or specific area of jaw.[31,32]

In this study, to assess primary stability, ITV was 
recorded as well. ITV is correlated with implant 
micromotion. Trisi et al.[33] showed maximum ITV in 
low‑  and high‑density bone could be 35  N/Cm and 
100  N/Cm, respectively. Each 10N/Cm increase in 
ITV decreases the micromotion about 4 micron. ITV 
can be affected by noncalibrated surgical handpiece, 

Figure 3: Multiple comparison of implant systems stability.
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hand pressure of surgeon, and unstable blocks during 
drilling, however, it is insignificant.[34]

In this study, ITV was in following sequence: 
DSL > NRT = RRST > ZTSV. ZTSV had significantly 
lower ITV (mean = 9) in comparison to others. ZTSV 
has V‑shaped thread, it is proved that square and 
reverse buttress thread shapes provide more stability 
than buttress and V‑shaped thread.[18] Furthermore, 
ZTSV fixture is self‑tapping which eases the 
insertion and reduces ITV, and the same finding of 
self‑tapping effect is supported by Ostman[22] Javed 
and Romanos,[35] and Piattelli et al.[36]

DSL showed the highest ITV  (mean  =  19) and it 
could be the result of double‑thread design. The effect 
of this macro design is compatible with Chiapasco 
et al.,[37] Fazel et al.,[38] and Cochran et al.[39]

RTV is an indicator of bone implant interfacial 
interface and was measured with torque controller 
device and the least torque needed to unscrew and 
remove the fixture was recorded.[40] RTV in ZTSV 
implant was lowest  (mean  =  7.72) with significant 
difference with NRT and DSL. This lower value in 
ZTSV system could be in association with V‑shaped 
thread and consequently lower functional surface and 
lower force for detorquing.

Lachmann et  al.[12] showed that removal torque 
value is lower in implants with self‑cutting blade in 
half‑apical part. The least removal torque value for 
long‑term stability is reported to be 30 NCm.[22]

In this study, RTV was lower than ITV in all systems 
the reason could be related to deformation and 
compression of the surrounding bone model by lateral 
forces of implant placement.[33]

In this study, although all systems had high ISQ, ITV 
and RTV were low, and they were not proper for 
immediate loading in D4 bone. In comparison, DSL 
and NRT with higher ISQ and ITV are better choice 
in low‑density bone to prevent failures in the early 
healing period.

CONCLUSION

This study demonstrated that primary stability of 
different implant systems was not comparable and 
implant design was effective on ITV, RTV, and 
ISQ. According to study’s limitation, the lowest 
amount of ITV and RTV was in ZTSV with no 
significant difference between others. The lowest and 

highest amount of ISQ value was in RST and NRT, 
respectively.
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