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ABSTRACT

Background: This study assessed the effect of the number of short implants on stress and strain 
distribution in bone in the posterior mandible using finite element analysis (FEA).
Materials and Methods: The study design utilized FEA, a computational technique. In FEA models, 
short implants (4 mm diameter and 6 mm length) were placed at the site of the mandibular first 
premolar to the second molar in four models: (I) two implants at the sites of teeth #4 and #7 with 
two pontics at the sites of teeth #5 and #6, (II) three implants at #4, #5, and #7 with one pontic 
at #6, (III) three implants at #4, #6, and #7 with one pontic at #5, and (IV) four implants at #4, #5, 
#6, and #7 with no pontic. A 100 N load was applied vertically and at a 30° angle to the occlusal 
surface of the crowns. Stress and strain distribution patterns in bone were evaluated using ANSYS 
Workbench.
Results: The highest maximum von Mises and shear stress and strain values under vertical and 
off‑axial loadings were observed in the model with two short implants at the sites of teeth #4 
and #7 with two pontics at the sites of teeth #5 and #6. In general, the highest stress and strain 
values were recorded following the application of off‑axial loads compared to vertical loads. In all 
models, the highest stress was noted in the cervical part of the implants, while the maximum strain 
occurred in the apical part of the implants.
Conclusion: Increasing the number of short implants significantly reduces stress and strain values 
in peri‑implant bone.
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INTRODUCTION

The use of endosseous dental implants to replace 
missing or hopeless teeth has become routine clinical 
practice over the past three decades. Implant‑supported 
fixed prostheses are often considered the treatment of 
the first choice. Clinical success largely depends on 
the biomechanical behavior of implants in terms of 

stress and strain transfer to supporting bone. Long 
implants were initially preferred, despite early finite 
element analyses indicating that major stress transfer 
to surrounding bone is primarily limited to the first 
3–5 threads.[1] However, in the posterior mandible, 
alveolar bone resorption may limit the use of long 
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implants  (>8  mm)[2,3] due to the proximity of the 
mandibular neurovascular bundle.[4,5] A minimum 
of 2  mm of bone height should remain undisturbed 
above this vital structure to avoid nerve damage.[6,7] 
Avoiding the mental nerve is also a consideration at 
mandibular bicuspid sites.[8,9] In additional, lingual 
mandibular bone concavities may increase the risks 
of fenestrations or perforations of the lingual cortical 
plate.[10] Short  (6–8  mm) or even ultrashort  (<6  mm) 
implants often allow effective treatment.

Short‑threaded implants had a mixed history in the 
past,[11] but substantial evidence now supports their 
use with proper technique and implant design.[12] Most 
implant manufacturers now offer short implants for 
use in the posterior mandible.

Current short implant designs feature moderately 
rough surface textures to increase surface contact 
with bone.[13] Due to the high crown/implant ratios 
associated with short/ultra‑short implants, prosthesis 
design should ensure favorable occlusal load 
distribution.[14] Splinting short implants helps distribute 
occlusal stresses among connected implants,[12] and 
increasing the number of short implants in a splinted 
prosthesis further aids stress distribution per unit 
area.[15] Tabrizi et  al.[15] reported that increasing the 
number of short implants in splinted prostheses 
reduces marginal bone loss.

A noninvasive way to predict in vivo stress distribution 
with dental implants is through computerized 
modeling.[16] Finite element analysis  (FEA)  is 
widely regarded as a suitable method for predicting 
three‑dimensional  (3D) stress and strain patterns 
around dental implants.[17,18] However, 3D FEA studies 
on optimal load distribution with implant‑supported 
fixed prostheses in the posterior mandible are limited. 
This study aimed to assess the effect of the number 
of short, splinted implants, and prosthesis designs on 
load distribution.

MATERIALS AND METHODS

This study employed FEA, a computational 
technique in biomechanics for analyzing hard tissue 
modeling. Ethical approval was obtained from the 
Ethical Committee, with the approval code IR.IAU.
KHUISF.REC.1398.27. A  3D finite element model 
was developed to calculate the maximum von 
Mises stress, shear stress, von Mises strain, and 
shear strain values around splinted short implants 
placed in the posterior mandible. Implants  (SIC 

invent AG, Basel, Switzerland) measured 6  mm in 
length and 4  mm in diameter  (abutment platform: 
4 mm). Loads of 100 N were applied vertically and 
obliquely (30°).

Modeling and three‑dimensional scanning
Four models with eight geometric configurations 
and two loading conditions were simulated in the 
posterior mandible. Combinations of sites for the 
first  (#4) and second (#5) premolars and the first  (#6) 
and second (#7) molars were as follows:

(Ia) Four implants  (sites #4, #5, #6, and #7) 
loaded with 100 N applied vertically.  (Ib) Four 
implants (sites #4, #5, #6, and #7) loaded with 100 N 
applied at a 30° angle. (IIa) Three implants (sites #4, 
#5, and #7) with a pontic at site #6, loaded with 100 
N applied vertically.  (IIb) Three implants  (sites #4, 
#5, and #7) with a pontic at site #6, loaded with 100 
N applied at a 30° angle.  (IIIa) Three implants  (sites 
#4, #6, and #7) with a pontic at site #5, loaded with 
100 N applied vertically.  (IIIb) Three implants  (sites 
#4, #6, and #7) with a pontic at site #5, loaded 
with 100 N applied at a 30° angle.  (IVa) Two 
implants (sites #4 and #7) with two pontics at sites #5 
and #6, loaded with 100 N applied vertically.  (IVb) 
Two implants  (sites #4 and #7) with two pontics at 
sites #5 and #6, loaded with 100 N applied at a 30° 
angle.

An ATOS II  (GOM GmbH, Braunschweig, Germany) 
scanner with ATOS Viewer v6.30 was used for 3D 
scanning. CATIA software  (version R21, Dassault 
Systèmes, France) was used for 3D modeling. 
ANSYS  software  (version16.1, Dassault Systèmes, 
France) was employed for FEA.

Table  1 shows the behavioral properties of the 
materials used. ANSYS meshing employed smaller 
elements in critical areas for more accurate results. 
Tetrahedral elements were used for meshing all 
components, and hexahedral elements were used 
for the bar. All elements were quadratic with high 
precision.

Table  2 presents the element data. Models were 
subjected to 100 N vertical and off‑axial loads at a 

Table 1: Behavioral properties of the materials used
Material Modulus of elasticity (MPa) Poisson’s ratio
Cortical 13,400 0.3
Porcelain 68,900 0.28
Cancellous bone 1370 0.3
Titanium 110,000 0.35



Figure 1: Four points of measurement in section of the first 
coordinate system model (2 upper in cortical bone and 2 lower 
in cancellous bone). UK: Upper left, UP: Upper right, LL: Lower 
left, LR: Lower right. Image Properties: Extension: jpg; Width: 
5056; Height: 2554; Resolution: 300/300.

Hosseini Naghavi, et al.: Impact of short implants on stress and strain

3Dental Research Journal / 2025 3

30° angle. Compressive loads were applied to the 
occlusal surface of the porcelain. To prevent jaw 
movement, its inferior border was fixed. Symmetry 
allowed only half of the jaw to be modeled. At the 
sectioned site, frictionless boundary conditions were 
applied. Contact between components was linearly 
bonded, allowing no sliding or separation.

Critical points in cortical and cancellous bone 
were selected for measurement and located at 
implant threads in the coronal  (cortical bone) 
and apical  (cancellous bone) regions  [Figure  1]. 
Equivalent  (von Mises) stress, shear stress, and strain 
values were calculated at these points. Each implant 
yielded 16 data points.

RESULTS

Table 3 shows the highest and lowest stress and strain 
values in all eight FEA models. The highest stress 
and strain values under vertical and off‑axial loadings 
were observed in the model with two short implants 
and two pontics. Conversely, the lowest values were 
noted in the model with four splinted short implants.

Models II and III showed reduced stress and 
strain values and more homogeneous distribution 
patterns in models with three implants at sites #4, 
#6, and #7 with a pontic at the second premolar 
site compared to three implants at sites #4, #5, and 
#7 with a pontic at the first molar site. Off‑axial 
loads generally resulted in higher stress and strain 
values than vertical loads. Maximum stresses were 
noted in the implant neck regions, while maximum 
strains occurred apically. Cortical bone recorded the 
highest stress values, and trabecular bone recorded 
the highest strain values.

DISCUSSION

This study evaluated the effects of the number of 
short implants on stress and strain distribution in the 
posterior mandible using 3D FEA. Bone constantly 
remodels in response to mechanical loads, preserving 
its mechanical properties.[19] Stress induces strain, 
causing deformation. A  strain of 1,000 με equates 
to a 1% change in bone length. Excessive strain can 
lead to fatigue fractures, while insufficient strain 
may result in bone resorption  (“disuse atrophy”).[19,20] 
Repetitive stresses exceeding 3000 με can cause 
microdamage and marginal bone loss, adversely 
affecting osseointegration.[21]

Bone has a porous structure with complex and tiny 
micro‑structures. It is anisotropic and different parts 
have different physical properties.[22] Around dental 
implants stress transfer from occlusion occurs at the 
bone‑to‑implant interface in cortical bone primarily 
at the most coronal implant threads. Strain is highest 
here because cortical bone has a lower modulus of 
elasticity than cancellous bone.[23]

Unless certain precautions are taken,[22‑26]

Marginal/crestal bone loss may occur post‑implant 
placement to re‑establish biological width,[27] but 
significant further loss is not anticipated with proper 
hygiene and absence of risk factors.[28]

In  vitro studies suggest that excessive biomechanical 
stresses due to incorrect occlusal design,[29] or 
framework misfit[30] of the implant‑supported 
restoration can adversely affect stability of marginal 
bone. Since too much stress can lead to unwanted 
MBL, choosing the appropriate number of implants 
to restore an edentulous space is crucial. Excessive 

Table 2: Element data
Variable Data
Number of elements 2,227,491
Number of nodes 3,380,796
Type of elements Tetrahedral + 

hexahedral
Element order Quadratic
Size of elements for the bar 0.25 mm
Size of elements for the porcelain 0.5 mm
Size of elements for the fixture and abutment 0.25 mm
Size of elements for cortical bone 0.5 mm
Size of elements for cancellous bone 0.5 mm
Size of elements for the external surface of fixture 0.1 mm
Size of elements for the internal surface of 
cortical bone and cancellous bone

0.1 mm
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MBL may lead to microbial infection of exposed 
implant surfaces leading to inflammation‑induced 
bone resorption and peri‑implantitis.

Waskewicz et  al.[31] reported that peri‑implant stress 
generation begins following prosthesis placement, and 
can be decreased with appropriate prosthesis design.[29‑31]

FEA is a valuable tool for studying stress distribution 
in implant‑supported prostheses.[32‑34] In this study, 
vertical and off‑axial loads were applied to assess 
the impact of implant number on load distribution. 
Results indicated that increasing implant numbers 
in the posterior mandible reduces stress and strain 
values, aligning with Tabrizi et  al.[15] and Gümrükçü 
and Korkmaz’s findings.[35] The optimal configuration 
for restoring posterior mandibular sites with short 
implants appears to be three implants with one pontic 
at the second premolar site.

CONCLUSION

Increasing the number of splinted short implants in the 
posterior mandible decreases stress and strain values 
under both vertical and off‑axial loads. Maximum 
stress was observed in cortical bone, whereas 
maximum strain was recorded in trabecular bone. The 

configuration of three implants at sites #4, #6, and #7 
with one pontic at the second premolar site provided 
the most uniform stress and strain distribution.
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