This is an open access article distributed under the terms of the Creative Commons Attribution NonCommercial ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non commercially, as long as the author is credited and the new creations are licensed under the identical terms.
To evaluate the effect of Cyclosporin A (CsA) and angiotensin II (Ang II) on cytosolic calcium levels in cultured human gingival fibroblasts (HGFs).
Healthy gingival samples from six volunteers were obtained, and primary HGFs were cultured. Cell viability and proliferation assay were performed to identify the ideal concentrations of CsA and Ang II. Cytosolic calcium levels in cultured gingival fibroblasts treated with CsA and Ang II were studied using colorimetric assay, confocal and fluorescence imaging. Statistical analyses were done using SPSS software and GraphPad Prism.
Higher levels of cytosolic levels were evident in cells treated with CsA and Ang II when compared to control group and was statistically significant (P < 0.05) in both colorimetric assay and confocal imaging. Fluorescent images of the cultured HGFs revealed the same.
Thus calcium being a key player in major cellular functions, plays a major role in the pathogenesis of drug-induced gingival overgrowth.
Drug-induced gingival overgrowth (DIGO) is one of the predominant side effects of certain systemically administered drugs such as phenytoin, nifedipine and cyclosporin A (CsA). Several theories have been put forth by researchers to elucidate the pathogenesis of DIGO. Risk factors such as age, poor oral hygiene, genetic predisposition, dosage, duration of drug intake, and gingival inflammation influence the relationship between the drugs and gingival tissue.
Angiotensin II (Ang II) being the effector peptide of renin-angiotensin system, elicits series of complex highly regulated cascades of intracellular signal transduction that leads to short-term vascular effects such as contraction and long-term biological effects such as cell growth, migration, extracellular matrix deposition, and inflammation. Apart from playing a key role in regulating local and systemic hemodynamics, it has been considered as a true cytokine with regards to renal pathology.
Ang II has been known to upregulate chemotactic factors such as monocyte chemoattractant protein-1 which could in turn stimulate fibrosis. It is noteworthy that Ang II also affects the intracellular calcium (Ca
2+) levels.
Ethical clearance
This study was approved by the Institutional Ethics Committee at Sri Ramachandra University, Chennai, India. Gingival tissue biopsy samples were obtained from six systemically healthy volunteers undergoing crown lengthening procedure at Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra University, Chennai. After describing the study procedure, informed consent was obtained from all volunteers before sample collection. Volunteers who were included in the study were not under any systemic medications so as to avoid confounding effects on the results.
Details of chemicals, reagents, and instruments used
Low glucose containing Dulbecco′s Modified Eagle Medium (DMEM) and trypsin were purchased from HiMedia (Mumbai, Maharashtra, India). EU certified fetal bovine serum and antibiotics were procured from Gibco (Waltham, MA, USA). Cells were counted with tryptan blue dye from Sigma-Aldrich (Bengaluru, Karnataka, India), all plasticware was purchased from Nunc Nalgene (Rochester, NY, USA). Calcium analysis was performed using a calcium green 1 AM from Invitrogen Bioservices (Bengaluru, Karnataka, India). All other chemicals of an analytical (research) grade were purchased from Sigma-Aldrich. EnSpire Multimode Plate Reader from Perkin Elmer (Waltham, Massachusetts, USA) was used to quantify fluorescence intensity level. A Nikon TE2000 Eclipse inverted fluorescence microscope with a CCD camera and ImagePro Software (Melville, NY, USA) and A Zeiss LSM 510 confocal microscope (Carl Zeiss, Germany) was used for fluorescence and confocal imaging studies respectively.
Sample collection and culturing of human gingival fibroblasts
The collected gingival samples were preserved in transport media containing 1X phosphate-buffered solution and antibiotics (penicillin - 100 IU/ml, streptomycin - 100 μg/ml, amphotericin B - 100 μg/ml, gentamicin-200 μg/ml, and ciprofloxacin-200 μg/ml) until they were processed. HGFs were cultured using enzymatic digestion method
Morphology of human gingival fibroblast cells: On day 2, a few individual cells were observed, followed by small fibroblast colonies observed on day 6, 10, 12, 18 and passaged (a-f). Photographs were taken using phase contrast microscope under x10. Scale 50 μm.
Cell viability and proliferation assay
To determine the viability and cell proliferation rate of HGF, live-dead cell staining (acridine orange/ethidium bromide [AO/EtBr]), and colorimetric tetrazolium salt 3-(4, 5-dimethyl thiazol-2yl)-2, 5-diphenyl tetrazolium bromide (MTT) test were performed.
Cell viability assay
Cultured HGF cells were treated with different concentrations of CsA - 10, 25, and 50 μM and Ang II - 100 nM, 1 μM, 10 μM, and 100 nM for 24 h. AO/EtBr (1 μg/ml) is a combination of AO and EtBr used to stain the cells treated with various concentrations of CsA and Ang II indicated above. AO stains both cytoplasmic and nuclei staining of live cells (green) whereas EtBr stains only the dead cell nuclei (red). After staining with AO/EtBr, HGF cells in all the 3 groups(control, CsA, and Ang II) were imaged using fluorescence microscopy.
Cell proliferation assay
HGF Cells (1 × 10
4) were seeded into 96-well tissue culture plates and then treated with various concentrations of CsA (1, 5, 10, 25 and 50 μM) and Ang II (100 nM, 1 μM, 1 μM, and 100 μM). After the incubation time of 24 h, the MTT test was performed by a previously described method.
Intracellular calcium intensity measurement by multimode plate reader
HGF cultured from six individual volunteer samples (5-8 passages) were seeded in a 96-well plate. Once the wells attained 80-90% confluence, the cells were incubated with 50 μl of 25 μM concentration of calcium green 1 AM for 45 min at 37 °C in dark. The solution containing the dye was discarded, and 100 μl of 25μM of CsA and 100 nM of Ang II were added to the respective wells, and calcium intensity was immediately measured using Perkin-Elmer EnSpire Multimode Plate Reader.
Intracellular calcium imaging by fluorescence microscopy
The HGF cells were seeded in a 96-well plate. Once the cells attained 80-90% confluence, they were incubated with 25 μM of calcium green 1 AM for 45 min. Just before imaging, 100 μl of 25 μM of CsA and 100 nM of Ang II were added to the wells. Nuclei were counterstained with 4, 6diamidino-2-phenylindole (DAPI). The cells were observed using a Nikon TE2000 Eclipse inverted fluorescence microscope and images were captured using a CCD camera and ImagePro Software.
Intracellular calcium imaging by confocal microscopy
HGF cells were grown on sterile glass coverslips. Once the cells were 80-90% confluent, live staining of intracellular calcium was done by incubating the cells with 25 μM of calcium green 1 AM for 45 min. Just before imaging, 100 μl of 25μM of CsA and 100 μM of Ang II were added into the appropriate coverslips. Confocal images were obtained using a Zeiss LSM 510 Confocal Microscope (Carl Zeiss, Germany).
Statistical analysis
All experimental data are represented as the mean ± standard deviation. Unpaired t-test was used to analyze the MTT results. With regard to calorimetric assay results, one-way ANOVA and post hoc tests with multiple comparisons (Tukey′s Honestly Significant Difference) were done to analyze the data statistically using SPSS 16.O (Kacharanahalli, Bangalore, India), Bengaluru, India, whereas Bonferroni posttests using Graphpad prism 6, Graphpad software Inc, (La jolla, California, USA) were used to analyze data from confocal imaging. P < 0.05 is set as statistically significant, P < 0.01 is set as highly significant and P < 0.001 is set as very highly significant.
Cell viability and proliferation assay of Cyclosporin A and Angiotensin II-induced human gingival fibroblasts cells
Preliminary effects of CsA and Ang II on HGF cells showed dose-dependent cytotoxicity (i.e., increased cytotoxicity with increasing concentrations of CsA
Human gingival fibroblast cells were incubated with Cyclosporin A (a - i, ii, iii) and Angiotensin II (b - i, ii, iii). After 24 h, incubation cell viability (acridine orange/ethidium bromide) and 3-(4, 5-dimethyl thiazol-2yl)-2, 5-diphenyl tetrazolium bromide assay were analyzed. Data were expressed as nonlinear regression analysis of the concentration-response. CsA: Cyclosporin A; Ang II: Angiotensin II.
HGF proliferation was determined by MTT assay after 24 h incubation with CsA and Ang II. We observed most satisfactory results. With increasing dose of CsA (50 μM) and Ang II (100 μM) per culture
Intracellular calcium imaging by fluorescence imaging
Live calcium staining was done by incubating HGF with calcium green 1 AM for 1 h and later nuclei were counterstained with DAPI (blue). Just before imaging, CsA (25 μM) and Ang II (100 nM) were added in their respective wells. Imaging was done using a Nikon TE Eclipse 2000 Immunofluorescence Microscopy under ×10 magnification. Maximum calcium staining was observed in CsA followed by Ang II
Human gingival fibroblast cells were incubated with calcium green 1 AM for 1 h and cyclosporin A (25 μM) and angiotensin II (100 μM) were added and nuclei stained with 4, 6diamidino-2-phenylindole (blue), imaging was done using an immunofluorescence microscopy under x10 (a). Time-dependent calcium intensity was measured (b). CsA: Cyclosporin A; Ang II: Angiotensin II; DAPI: 4, 6-diamidino-2-phenylindole.
Colorimetric assay
Time-dependent calcium intensity measurement from 10 to 100 s was done in all the three groups (control, CsA, and Ang II) by incubating the cells with calcium green 1 AM using a multimode plate reader. CsA group showed maximum calcium intensity followed by Ang II. A mild peak in calcium intensity occurred around 20-30 s in CsA and Ang II, following which there was a fall followed by a sustained plateau in all the groups
Intracellular calcium imaging by confocal microscopy
Three HGF samples were cultured and grown on coverslips. Maximum calcium staining was observed in CsA followed by Ang II and least staining was observed in control sample
Live staining was done by incubating the human gingival fibroblast cells with calcium green 1 AM for 1 h following which cyclosporin A and angiotensin II was added and images were taken using confocal microscope under × 20 objectives (a). Histogram represents the mean fluorescence intensity (b). CsA: Cyclosporin A; Ang II: Angiotensin II; HGF: Human gingival fibroblasts. Confocal imaging analysis study shown that cyclosporin A and angiotensin II-treated human gingival fibroblast cells stained with calcium green 1 AM and respective graphical representation shown the fluorescence intensity levels (a-c). CsA: Cyclosporin A; Ang II: Angiotensin II.
The pathogenesis of DIGO has been extensively studied. Results of which led to the concept of overgrowth being attributed to increase in synthesis of extracellular matrix rather than increase in cellular proliferation. This is possibly be due to the interplay between increased synthesis and impaired degradation of extracellular matrix.
Drugs such as CsA that induce gingival overgrowth possess calcium channel blocking effect pharmacologically and it is observed to increase intracellular calcium. In a similar way, in CsA-induced renal fibrosis, the drug influences the cell through Ang II. Animal studies have demonstrated the influence of CsA on Ang II in gingiva. This study was carried out to observe if CsA and Ang II have a similar effect on HGF intracellular calcium. In our pursuit, we demonstrated a significant increase in intracellular calcium in HGFs when treated with CsA and Ang II, which was statistically significant (P < 0.01) when compared with the controls. Our results were in accordance with the results of a previous study
Recently, a locally operating renin-angiotensin system has been identified in the gingiva and Ang II has been known to increase matrix proteins. Ang II has been implicated in various physiological functions at a molecular level such as proliferation and hypertrophy and it is also known as a morphogenic cytokine. In a study,
According to our study results, the dynamic time-dependent calcium intensity curve showed a mild initial spike followed by a sustained plateau when exposed to Ang II. Ang II typically mediates a biphasic Ca
2+response comprising a rapid early transient phase and a sustained plateau phase as we have explained above. The initial transient Ca
2+phase is generated primarily by inositol 1, 4,5-triphosphate-induced mobilization of calcium from intracellular calcium stores.
Sobral et al. suggested that CsA-induced expression of transforming growth factor β (TGF-β) in HGFs.
One of the major consequences of elevated cytosolic calcium could be the activation of c-Jun and c-Fos. C-Jun in combination with c-Fos, forms the activator protein-1, an early response transcription factor. Cruzalegui et al.
CsA is a medically important drug, which is used in organ transplant conditions. Apart from its other well-known side effects, it is also known to cause enlargement of gingiva which is termed as CsA-induced gingival overgrowth. Among the various pathways put forth in regard to the pathogenesis of DIGO, RAS, and its role in calcium homeostasis has been studied recently. Thus, we sought to analyze the effect of CsA and Ang II on cytosolic calcium levels in cultured HGFs. The results of our study showed an increase in cytosolic calcium levels when HGF were treated with CsA and Ang II. This mechanism could plausibly upregulate certain important transcription factors such as c-Jun which is implicated in the pathogenesis of DIGO. Thus, it is noteworthy to research more on this area and bring out therapeutic strategies accordingly.
Financial support and sponsorship
Nil.
Conflicts of interest
The authors of this manuscript declare that they have no conflicts of interest, real or perceived, financial or non-financial in this article.