This is an open access article distributed under the terms of the Creative Commons Attribution NonCommercial ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non commercially, as long as the author is credited and the new creations are licensed under the identical terms.
Plasma rich in growth factors (PRGF) and freeze-dried bone allograft (FDBA) are shown to promote bone healing. This study was aimed to histologically and histomorphometrically investigate the effect of combined use of PRGF and FDBA on bone formation, and compare it to FDBA alone and control group.
The distal roots of the lower premolars were extracted bilaterally in four female dogs. Sockets were randomly divided into FDBA + PRGF, FDBA, and control groups. Two dogs were sacrificed after 2 weeks and two dogs were sacrificed after 4 weeks. Sockets were assessed histologically and histomorphometrically. Data were analyzed by Kruskal-Wallis test followed by Mann-Whitney U-tests utilizing the SPSS software version 20. P < 0.05 was considered statistically significant.
While the difference in density of fibrous tissue in three groups was not statistically significant (P = 0.343), the bone density in grafted groups was significantly higher than the control group (P = 0.021). The least decrease in all socket dimensions was observed in the FDBA group. However, these differences were only significant in coronal portion at week 4. Regarding socket dimensions and bone density, the difference between FDBA and FDBA+PRGF groups was not significant in middle and apical portions.
The superiority of PRGF+FDBA overFDBA in socket preservation cannot be concluded from this experiment.
Unfavorable dimensional and morphologic changes of the alveolar bone are inevitable subsequent to tooth extraction. The most destructive changes are reduction of socket walls, especially the buccal wall,
Numerous materials including autograft, allograft, xenograft, and alloplastic bone graft have been utilized to maintain the alveolar ridge after tooth removal. Each of these materials has its own advantages and disadvantages.
Guided bone regeneration (GBR) is shown to maintain ridge to some extent. However, in previous investigations performing GBR, ridge dimensions were not completely preserved.
Only a few studies have compared DFDBA and freeze-dried bone allograft (FDBA). Borg et al. observed a greater new bone formation with a combination of mineralized and demineralized allograft compared to mineralized FDBA in alveolar ridge preservation in humans.
Platelet-rich plasma (PRP) is an autograft for regeneration of bone defects. It contains growth factors such as platelet-derived growth factor , transforming growth factor-β, fibroblast growth factor, insulin-like growth factor-I , epithelial growth factor, vascular endothelial growth factor, and other secretory proteins.
Plasma rich in growth factors (PRGF) is a similar recent product
PRGF has been successfully used to enhance the regeneration of bone and epithelial tissues. It is shown that PRGF can decrease complications of surgeries as pain and inflammation. In addition, PRGF has been shown to enhance theosseointegration of the implants inserted in sockets.
As mentioned above, various biomaterials have been used to augment bone. Since the effects of PRGF and FDBA has been evaluated separately and it is shown that these biomaterials have a marked positive effect on bone healing and socket preservation, respectively,
Ethical considerations
The ethical approval of the Ethics Committee of the Dental Research Center at Isfahan University of Medical Sciences was obtained. This in vivo study was performed following the Institutional Review Board guidelines for the use and care of laboratory animals.
Plasma rich in growth factor isolation, animal models, and surgery
A volume of 9 mL of peripheral blood of each dog was collected from saphenous vein. Tubes contained an anticoagulant (3.8% sodium citrate). Using a Digital Apparatus (Model PRGF System IV, BTI, Biotechnology Institute, Spain), the plasma in 9ml tubeswas centrifuged at 2000 rpm for 8 min.
Fraction 1 (the supernatant, 2 mL) was plasma with a concentration of platelets comparable to peripheral blood (platelet-poor plasma) which was removed. Fraction 2 (intermediate layer, 1 mL) had a platelet concentration higher than physiologic level. Fraction 3 (PRGF, 1 mL) which was the richest in platelets (2-3 times more than the peripheral blood) and growth factors was collected.
A volume of 0.05 mL of CaCl 210% (as a PRGF activator) was added to each mL of Fraction 3. Plasma was mixed with the graft material. A clot containing the graft and sticky in consistency (easy to handle and compact) formed within 2-5 min. PRGF and the activator were heated for 10 min by a heater to 37°C. The scaffold-like PRGF was ready to be mixed with FDBA.
Four disease-free 12-month-old female dogs, weighting 15-20 kg, were selected and kept in individual cages with similar conditions and standard diet during the experiment. Animals were first kept in quarantine for 2 weeks to perform antibacterial treatment and vaccination against common diseases.
The surgical procedures were under general anesthesia which was induced by intramuscular (IM) injection of 1% acepromazine (alfasan, 0.02 mL/kg) and 10% ketamine (10 mg/kg), followed by the administration of inhaled halothane. Local anesthesia was achieved using 2% lidocaine with epinephrine (1:100,000) (Darou Pakhsh, Tehran, Iran) in lower premolar regions.
Sulcular incisions were made in the premolar regions (second, third, and fourth [P2, P3, and P4]) in the right and left sides of the mandible after which a full-thickness flap was elevated to expose 1-2 mm of the alveolar crest.
Distal roots were removed by a periotome and an elevator
Group 1 (experimental group): FDBA + PRGF Group 2: FDBA + saline Group 3 (control group):Filled with blood clot.
Eight sockets were randomly selected in each group. Following filling of all the extraction sockets, entrances of extraction sockets were covered by buccal and lingual flaps. Flaps were sutured in their original position with interrupted absorbable 3-0 Vicryl sutures (SUPA Medical Devices, Tehran, Iran).
Antibiotic therapy was administered postoperatively: ceftriaxone, 500 mg (Jaber Ebne Hayyan, Tehran, Iran) IM, four times a day for 5 days. 5 mg/kg of oral tramadol (Tehran Chemie, Tehran, Iran) was administered to relieve pain.
Dogs were given a soft diet, and a regular examination was performed daily to assess the systemic health or detect any problem, including suture opening and postoperative infection. Two dogs were sacrificed in 2 weeks after surgery with an intravenous overdose of thiopental sodium, leading to a painless and rapid death.
The other two dogs were sacrificed in 4 weeks after surgery by the same method. Mandibles were removed, and the premolar sites (P2, P3, and P4), including the mesial root and distal socket area, were dissected by a diamond saw. Specimens were kept in 10% buffered formalin solution for 3 days after which they were placed in 10% nitric acid to be demineralized and prepared for histological and histomorphometric assessment.
Histology and histomorphometry, statistical analyses
Sections from premolar site (two sections from the mesial roots and two sections from the healed distal socket) were cut in the buccolingual plane perpendicular to the bone surface. Sections were prepared from the central part of the socket or the root.
A series of sections of 5μm in thickness were obtained and then stained with hematoxylin and eosin (H and E).
Sections were observed and histologically evaluated under a light microscope (Nikon, YS100, Tokyo, Japan) at magnifications of ×10, ×100, and ×400. Type of newly formed bone (compact or cancellous) inside the socket, fibrous tissue, the epithelium, and the presence of inflammation were evaluated.
A stereomicroscope (Zoom Stereomicroscope, HP SMP 200, USA) software (Motocam 480 Digital camera SP 10/0224, Canada) was utilized to determine the histomorphometric criteria.
Following landmarks were identified
BC: The crest of the buccal bone wall at the mesial root sites LC: The crest of the lingual bone wall at the mesial root sites A: Apical portion of the periodontal ligament of the mesial root BB: Base of the basal body of the mandible (vertical distance between A and the base of the mandible). Diagram of landmarks used for histomorphometric measurements. LC:Lingual crest of tooth; BC:Buccal crest of tooth; r-r:Rooth length; BB:Thickness of the base of the mandible, a-a:Apical limit of alveolar process; A:Apical limit of periodontal ligament.
The image of the alveolar process (AP) at the root site was divided into three equal portions of apical, middle, and coronal area
To determine the percentage of newly formed bone, histomorphometric study wascarried outby Nilu analyzer software and a microscope (Sand Optic BM 22, Isfahan, Iran) at ×10, ×100, and ×400 magnifications. The percentage of bone, fibrous tissue, and empty spaces of socket wascalculated.
The outline of AP obtained from the sections representing the corresponding mesial root site (including the apical, middle, and coronal portions) was projected over the section using r-r as the reference line to estimate the size of the distal portion of edentulous area.
Similarly, the area occupied by each of the apical, middle, and coronal portions was measured with a cursor and presented in mm 2. The changes of the size of the AP after tooth extraction in each dog was calculated by subtracting the value obtained at the extraction site from the corresponding value at the mesial root site.
The type of the new alveolar bone was determined by utilizing a point-counting procedure. Using the dog as the statistical unit, mean values and standard deviations (SDs) were calculated.
Statistical analysis was performed using Mann-Whitney U with the Kruskal-Wallis tests by SPSS software (IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp.). Each value represents the mean ± SD. P < 0.05 was considered statistically significant.
After H and E staining, healing was observed in all the extraction sockets. Based on the blinded reading performed by a pathologist, no grafted particles were found in any of the specimens. In histologic sections, fibrous tissue and lamellar spongy mature bone were observed, and woven bone was not detected in any specimen. Bone marrow was observed in all the specimens
Microphotograph of healed sockets. B:Lamellar spongy mature bone(H and E, ×100). Microphotograph of healed sockets. B:Lamellar spongy mature bone(H and E, ×100).
In all three groups, the healed extraction sockets were covered with an oral mucosa with parakeratinized oral epithelium. The connective tissue of this mucosa contained a few inflammatory cells showing a mild inflammation.
The mean decrease in the coronal, middle, and apical area of sockets as well as the socket height in the FDBA+PRGF, FDBA, and control groups is shown in
Socket height of the FDBA group was the most preserved in comparison to the two other groups. However, according to the Kruskal-Wallis test, this difference between three groups was not statistically significant (P = 0.295).
As shown in
While the cross-section area of middle part of the socket was least decreased in the FDBA group (followed by the control and FDBA+PRGF groups), this difference was not significant; however, the difference in the middle surface of the sockets was statistically significant between the control and FDBA+PRGF groups (P = 0.038).
The least decrease in the apical portion was observed in the FDBA group, followed by the FDBA+PRGF and control groups. However, Kruskal-Wallis test showed that this difference in the apical portion of sockets was not statistically significant (P = 0.059).
To evaluate the effect of time on bone healing, socket dimensional changes were compared at 2 and 4 weeks. Mann-Whitney U-test revealed a significant difference in apical and middle change of control group at 2 and 4 weeks (P = 0.029). In addition, the coronal portion of FDBA group changed significantly (P = 0.029). Other dimensional differences between 2 and 4 weeks were not statistically significant.
In general, grafted sockets showed less decrease in socket dimensions in comparison to the control group. Only significant changes were observed in FDBA group in coronal portion that was better preserved than two other groups, and FDBA+PRGF group which was better preserved in the middle portion than the control group. Summary of changes at 2 and 4 weeks is shown in
Mean dimensional changes of three groups at 2 and 4 weeks. Height in mm and cross-sections of coronal, middle, and apical portions in square mm
2.
Several recent studies investigated the effect of PRP alone or in conjunction with other grafts. Although many studies suggested that PRP improves bone healing,
The PRP material used in the present investigation is termed PRGF, and it differs from the other PRP systems which are commercially available in whichit does not include bovine thromboplastin and interleukins, and in whichconcentration of platelets and speed of centrifugation are different. As mentioned previously, PRGF is more advantageous than PRP. However, various and controversial results have been reported regarding its effect on bone regeneration.
In the present study, the effect of FDBA with and without PRGF on enhancing bone regeneration was evaluated both histologically and histomorphometrically. In general, whereas the reduction of the socket dimensions was observed in all three groups, it was better preserved in grafted groups than the control group
In general, the most decrease was observed in coronal portion of control groups which is compatible with the results of other studies performed by Araújo and Lindhe,
In addition, we observed that the FDBA group was better preserved than FDBA + PRGF group in all dimensions; however, this difference was only significant in coronal portion at week 4.
The least decrease was in apical portion. This is also identical to the results of Schropp et al.
Regarding the middle portion, Mogharehabed et al., who compared DFDBA and DFDBA+PRGF with the control group in a similar study design, observed the most decrease in middle portion of control group followed by DFDBA+PRGF and then DFDBA group; however, these differences were statistically insignificant as well.
Regarding the changes in apical portions, a mean reduction of 0.31 mm was observed in grafted groups. This observation is in agreement with findings previously reported by Mogharehabed et al.
Although Anitua et al. reported that using PRGF with Bio-Oss leads to socket preservation,
The density of spongy bone in both groups of grafted sockets was significantly more than the control group. While this density was maximum in FDBA+PRGF group, it was not significantly more than FDBA group. As mentioned above, no grafted particles were found in any of the specimens, and this is in contrast with the report of Simon et al. who observed DFDBA in coronal portion of sockets.
The dimensional differences of grafted groups were not significant between 2 and 4 weeks except in coronal portion of FDBA group. The similarity of bone dimensional changes at 2 and 4 weeks in FDBA+PRGF group may be because degranulation of platelets lasts 3-5 days and their primary growth factor activity stops in 7-10 days.
Taken together, while the findings of the present study lend further support to the advantageous effects of both FDBA and PRGF in socket preservation generally, the superiority of PRGF or PRGF+FDBA to FDBA cannot be concluded from this experiment. However, this study does open up the need for further studies to investigate the effect of PRGF as an independent graft material or in combination with other materials.
This study was supported by the Isfahan University of Medical Sciences under grant number 392143. The manuscript was based on a thesis submitted to the Postgraduate School of Isfahan University of Medical Sciences in partial fulfillment of the Master of Science degree. There were no particular conflicts of interest with any organization.
Financial support and sponsorship
Isfahan University of Medical Sciences. Grant Number: 392143.
Conflicts of interest
The authors of this manuscript declare that they have no conflicts of interest, real or perceived, financial or non-financial in this article.