This is an open access article distributed under the terms of the Creative Commons Attribution NonCommercial ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non commercially, as long as the author is credited and the new creations are licensed under the identical terms.
The aim of this study was to compare the in vitro effects of four different root canal sealers on the fracture resistance of endodontically treated teeth.
Seventy-five freshly extracted human mandibular premolars were used for the study. Teeth were divided into five groups based on type of root canal sealers used. Gutta-percha was used for all the samples: Group I: AH Plus root canal sealer, Group II: MTA Fillapex root canal sealer, Group III: Apexit root canal sealer, Group IV: Conventional zinc oxide-eugenol (ZOE) sealer, Group V: Control (unobturated teeth). The teeth were embedded in acrylic resin blocks and fracture force was measured using a universal testing machine (Asian Test Equipments). Data obtained were statistically evaluated using one-way ANOVA and post hoc test (Tukey's test). All groups showed statistically significant result (P < 0.05).
Group I and Group II showed higher resistance to fracture than other three groups. There was comparable difference in fracture force between Group I and Group II. Moreover, there was no statistically significant difference between Group III and Group IV and between Group IV and Group V.
Based on this in vitro study, resin-based sealer was more effective as compared to other sealers and the control group. However, no significant differences were observed between ZOE and control group.
The strength of endodontically treated teeth depends on the remaining amount of tooth structure after canal preparation. The factors affecting root fracture after endodontic therapy are over instrumentation, dehydration of dentine after endodontic therapy, and also uncontrolled pressure during obturation. All of these factors cumulatively and in addition to occlusal load increase the possibility of a root fracture. Furthermore, synergetic actions of intracanal irrigants and medicaments may also influence the physical and mechanical properties of the root dentine, which leads to failure or fracture of endodontically treated teeth.
In endodontically treated teeth, the root canal system is reinforced by obturating the root canal in order to increase the resistance of the tooth to compressive strength.
Apexit Plus (Ivoclar Vivadent, Schaan, Liechtenstein) is a calcium hydroxide (Ca(OH)
2)-based root canal sealer. It triggers healing by inducing hard tissue formation, has antibacterial activity, and mediates the degradation of bacterial lipopolysaccharides thereby controlling inflammatory root resorption.
AH Plus (Dentsply, Konstanz, Germany) is an epoxy resin-based sealer with properties including easy handling, potential for better wettability of the dentine and Gutta-percha surfaces, and good sealing property. Resin-based root canal sealers are considering as the material of choice due to their ability to penetrate into dentinal tubule and the possibility of creating monoblocks between the root canal filling material and intraradicular dentin. These properties are considered to be of paramount importance among root canal sealers.
MTA Fillapex (Angelus, Londrina, Brazil) is a mineral trioxide aggregate (MTA)-based, salicylate resin root canal sealer containing 13% MTA and salicylate resin for their antimicrobial and biocompatibility properties.
It has been well established that resin-based root canal sealer (AH-Plus) has a good retention to root dentine, leading to a good seal of the root. The MTA-based root canal sealer (MTA Fillapex) and the Ca(OH) 2-based root canal sealer (Apexit Plus) both have good biocompatibility and antibacterial activity. A root canal sealer which only helps in achieving a good hermetic seal but also has antibacterial property and would provide deposition of calcified tissue, and protection against root fracture would be considered as ideal.
Thus, this study was undertaken to evaluate the fracture resistance of root canal sealers of different bases to root dentine of endodontically treated tooth when they are subjected to vertical loads from a universal testing machine.
The present study was conducted in the Department of Pedodontics and Preventive Dentistry at ITS Centre for Dental Studies and Research (CDSR), Ghaziabad, India. For this study, 75 intact noncarious human mandibular premolars, extracted for orthodontic purposes were selected. The extracted teeth were cleaned and were stored in normal saline till the further period of the study. The teeth were prepared by the same operator, whereas the fracture resistance test was carried using a universal testing machine operator at Centre for Advanced Research (ITS CDSR). The teeth were decoronated using a wheel diamond bur to a standard length of 14 mm. Biomechanical preparation was done using ProTaper rotary system at a torque of 2.6 nm and speed of 250 rpm (Dentsply, Ballaigues, Switzerland) till F3. The canals were irrigated in three steps between the successive filings, initially with 5 ml of 3% sodium hypochlorite followed by 5 ml of 17% ethylenediaminetetraacetic acid. Final rinse was done with 5 ml of normal saline. The canals were dried using paper points. The specimens were then randomly divided into five experimental groups of 15 teeth each according to the root canal sealer used. Lateral compaction technique was used to obturate the samples with ProTaper Gutta-percha points.
Group I: AH Plus root canal sealers (Dentsply, Konstanz, Germany) and Gutta-percha points Group II: MTA Fillapex (Angelus, Londrina, Brazil) and Gutta-percha points Group III: Apexit Plus (Ivoclar Vivadent, Schaan, Liechtenstein) and Gutta-percha points Group IV: ZOE in a thin consistency as a sealer and Gutta-percha points Group V: Control group (unobturated teeth).
The access cavity was sealed with temporary cement. Five-millimeter apical root end was embedded in acrylic resin and 9 mm length of the root exposed for vertically positioning the root at the time of testing. All the specimens were stored at 37°C in 100% relative humidity at Centre for Advanced Research (ITS CDSR) for 2 weeks. Fracture resistance testing was done using a universal testing machine (Asian Test Equipments, New Delhi, India). The blocks with the vertically aligned roots were mounted on the testing machine one at a time on the lower platform jig. A custom-made metal indenter of 3 mm diameter was tightened to the upper jig and force was applied vertically down the long axis of the root. The tip of the indenter was centered over the canal orifice. Each specimen was subjected to slowly increasing vertical force at a crosshead speed of 1 mm/min until the root fractured. The compressive load was applied at 0° to the long axis of the roots. It was determined by a drop in the force applied and also by the sound of the root cracking up
Schematic figure representing root segment for load to fracture test. The tooth was mounted vertically in 10 mm of cold cure acrylic block exposing 9 mm of the coronal portion. 5 mm of the root is embedded in the acrylic block. A 3 mm diameter metal indenter is used at a crosshead speed of 1 mm/min to fracture test the endodontically treated root.
The normality of data in the present study was tested using Shapiro–Wilk test and was found to be normally distributed (P ≥ 0.05)
Box plot diagram representing distribution pattern of the measured fracture force values in different groups. (n: Newton)
Fracture force for various groups
The distribution of mean ± standard deviation of fracture force of Group I (AH Plus) was 240.74 ± 23.98 N, Group II (MTA Fillapex) was 174.53 ± 48.07 N, Group III (Apexit) was 128.59 ± 41.34 N, Group IV (ZOE) was 125.54 ± 26.68 N, and Group V (Control) was 89.83 ± 25.62 N. Group I (AH Plus) exhibited the highest fracture force (240.74 ± 23.98 N), while Group V (Control) showed the lowest fracture force (89.83 ± 25.62 N)
Mean values of fracture force of obturated and nonobturated root canals. (n: Newton)
Intergroup comparison using one-way ANOVA and post hoc tests (Tukey's test)
On applying post hoc tests and setting a level of significance at 0.05, it was seen that Group I (AH Plus) showed statistically significant difference when compared with other four groups. Group II (MTA Fillapex) showed statistically significant difference when compared with Group III (Apexit Plus) and Group IV (ZOE). However, Group III (Apexit Plus) showed no statistically significant difference when compared with Group IV (ZOE). Moreover, Group IV (ZOE) and Group V (Control) also showed no statistically significant difference when comparison was made between the two groups (P ≥ 0.05)
A sealer is conceived as a joint created between radicular dentine and filling material. For a root canal sealer, the ability to resist break in the accomplished seal through micromechanical retention or friction is extremely desirable during intraoral tooth flexure
Adhesion of root canal sealer to radicular dentine is important for two main reasons. first is the superior seal which in turn results in less coronal and apical leakage
The wide range of sealers have been used over the years, namely, ZOE, Ca(OH) 2sealer, glass ionomer sealer, resin sealers (epoxy-based, urethane dimethacrylate-based) and most recently Bioceramic and MTA-based root canal sealers.
A prime requisite for a sealer to be ideal is having a high fracture resistance and forming a successful monoblock in conjunction with the obturating material. Thus, assessment of fracture resistance of sealers needs to be judged. Therefore, this study was undertaken to test the fracture resistance of the roots receiving different canal sealer materials using the universal testing machine. Here, vertical force with a compressive load was used which is similar to the technique used by Sedgley and Messer to test the brittleness of endodontically treated teeth.
The results of the present study showed that AH Plus had significantly high resistance (P< 0.001) to fracture than all other tested root canal sealers. These results are in accordance with the previous study of Fisher et al.,
They related the higher fracture resistance of AH Plus to formation of a covalent bond by an open epoxide ring to any exposed amino groups in the collagen. AH Plus has a better penetration into the micro-irregularities because of its creeping property and long polymerization period, which increases the mechanical interlocking between the sealer and root dentine.
In another study by Gesi et al.,
Nagas et al.
In our study, MTA Fillapex showed significantly higher fracture resistance (P< 0.05) as compared to Apexit, conventional ZOE, and the unobturated canals (control) but lower bond strength than AH Plus.
Sarkar et al.
In the present study, Apexit Plus showed lower fracture resistance than AH Plus and MTA Fillapex, which may be due to its greater solubility which leads to substantial breakdown in its seal, thereby hampering the sealing capability of the root canal sealer. In a study by McMichen et al.,
In the present study, Apexit Plus and conventional ZOE did not show statistically significant difference. This in accordance with the studies of Rothier et al.,
The bonding of ZOE is by chelating reaction which takes place during setting. The zinc ion may react with mineral component of dentine as well as with the zinc oxide in Gutta-percha cone which creates an interlocking meshwork that increases adhesion between the two materials.
The results of the present study demonstrated that ZOE sealer showed the lowest fracture resistance of the four sealers studied. These results are in accordance with the previous studies of McComb and Smith,
In the present study, Apexit Plus showed higher fracture resistance values as compared to ZOE though the results were statistically not significant. The slightly higher fracture resistance values for Apexit Plus may be due to the fact that Ca(OH)
2-based sealers have lower microleakage values that ZOE as reported by Siqueira et al.
In addition, initial solubilization of sealer with release of hydroxyl ions might induce a biological closing of apical foramen by formation of hard tissue, thus minimizing long-term dissolution.
ZOE and control groups which comprised unobturated root canals showed no significant difference in the fracture resistance. This is in accordance with the previous studies of Bhat et al.
Recently, AH Plus has been widely accepted as a sealer in root canal filling with Gutta-percha due to its better adhesion MTA Fillapex and Apexit Plus are both therapeutic sealers having capability to heal apical tissues and to regenerate the tissues. The results of our study showed that MTA Fillapex had a better bond strength than Apexit Plus, thus to obtain a good hermetic seal with good adhesion MTA Fillapex can be considered in selected cases. However, to obtain a better adhesion with root canal and obtain a good secondary monoblock, AH Plus should be used as it shows better adhesion than most of the root canal sealers.
Conclusions that were drawn from the results of the present study are as follows:
AH Plus (240.74 ± 23.98 N) showed the highest push-out bond strength values amongst the groups followed by MTA Fillapex (174.53 ± 48.07 N) Both AH Plus and MTA Fillapex showed better push-out bond strength than the other root canal sealers used AH Plus exhibited the highest push-out bond strength (240.74 ± 23.98 N) while non-obturated root canals showed the lowest push-out bond strength (89.83 ± 25.62 N).
Financial support and sponsorship
Nil.
Conflicts of interest
The authors of this manuscript declare that they have no conflicts of interest, real or perceived, financial or non-financial in this article.