This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
The aim of this study is the effect of stress distribution within the bone with varying implant crest module designs.
Finite element models of a straight two-piece 4 mm × 13 mm screw-shaped threaded implant with divergent, straight, and convergent implant crest module with their surrounding suprastructure embedded in mandibular second premolar area were created with ANSYS software. Different implant crest module designs incorporated in D2 types of bone under 100N axial and 100N at 20° oblique load were created to evaluate stress distribution in the crestal bone around implant crest module.
Maximum von Mises stress was observed at the crestal region of the bone and at crest module region of the implants in all the models. Divergent crest module design shows minimum von Mises stress at crestal bone during vertical loading within bone and at implant crest module. Straight crest module designs result in minimum stresses during oblique loading than vertical loading. Convergent crest module design shows maximum von Mises stress.
Within limitations of the study, it was concluded that stress distribution in adjacent compact bone is greatly influenced by implant crest module design. Divergent crest module designs result in minimum stresses at crestal bone and in the implant crest module region, followed by straight and convergent crest module in ascending order of stress distribution.
A new era for oral rehabilitation began with the introduction of osseointegrated dental implants. The high success rates and long-term follow-up of patients treated with osseointegrated dental implants have attracted the interest of clinicians and researchers worldwide.
Implant crest module is the transosteal region of an implant body also called as an implant collar which is designed to accept the prosthetic component in implant system and serve as region which receives the crestal stresses to the implant after loading. Divergent, straight, and convergent implant crest module designs are available nowadays. Implant collar designs are one of the most likely causes of early implant bone loss.
Misch et al.
Finite element analysis (FEA) is an effective computational tool that has been adapted from the engineering arena to dental implant biomechanics. The components in a dental implant–bone system are extremely complex geometrically; FEA has been viewed as the most suitable tool for analyzing them.
Hence, the study was planned to comparatively evaluate the effect of stress distribution at crestal bone and in the implant crest module region with divergent, straight, and convergent implant crest module designs and to determine which implant crest module geometry is more favorable for the preservation of bone. The null hypotheses was that there was no influence of varying implant crest module designs on the stress distribution to the bone.
Construction of geometric models
A three-dimensional (3D) finite element model (FEM) of mandibular section representing the second premolar region was modeled with cortical and cancellous bone. The posterior mandible (from distal to first premolar to mesial to first molar) was harvested from a dry human skull. A digital image of a mandible was modeled using 3D CAD design software CATIA v5 R21 [solidwork; Avions Marcel Dassault, France]. D2 type bone was modeled (as per Lekholm and Zarb classification)
A straight two-piece 4 mm × 13 mm screw-shaped threaded implant was modeled. Implants used in this study were made up of titanium. Implant was divided into implant body and implant crest module, having length of 11 mm and 2 mm, respectively. All implant models had V-shaped thread design of spiral type along implant body length with thread pitch of 0.8 mm and thread depth of 0.25 mm. Three different implant crest module designs straight, divergent, and convergent were constructed having diameter of 4, 4.5, and 3.5 mm, respectively. Rigid straight hex abutment of 4-mm diameter at abutment collar interface and height of 5.5 mm was modeled over the fixture. Mandibular second premolar was modeled as per dimensions mentioned in the textbook of Dental Anatomy with crown framework of cobalt–chromium alloy (0.5 mm thickness) and occlusal surface of feldspathic porcelain (1.5 mm thickness) as given in
(a) Graphic representation of model. (b) Meshed model. (c) von Mises stress within bone for straight crest module during vertical loading. (d) von Mises stress within bone for straight crest module during oblique loading.
Bone implant interface
The FEM assumed a state of optimal osseointegration, which means that the cortical and trabecular bone were assumed to be perfectly bonded to the implant. It was assumed that the dental implant had been placed in the mandible after a certain healing period for osseointegration and at the beginning of function.
Mesh generation
The 3D FEM corresponding to the geometric model was meshed using Hypermesh v11.0 software [ANSYS version 14.5 software] as shown in
Material properties
All materials were designated as homogenous, isotropic, and linear elastic. The Young's modulus of elasticity and Poisson's ratio values of materials to be used will be adopted from the literature and are summarized below in
Defining the boundary conditions
Boundary condition is the application of force and constraint. The boundary conditions were constrained at node on muscle attachment from external oblique line buccally to the mylohyoid ridge lingually.
Application of different load
Depending on the hardness of foods, the average bite force reportedly ranges from 20 to 120 N.
Execution of analysis and interpretation of results
A total of three models of implant were prepared which were tested for von Mises stress by applying vertical load of 100 N and angular load of 100 N at 20° in D2 type of bone. von Mises stress values are defined as the beginning of the deformation for ductile materials such as metallic implants. Failure occurs when von Mises stress values exceed the yield strength of an implant material.
In the present study, von Mises stress analysis was done with ANSYS classic 14.5software (PA, USA). The stress analysis executed by Ansys software provided results that enabled the tracing of von Mises stress field in the form of color-coded bands which represents a particular range of stress value, which is given in Mega Pascal (MPa).
Straight crest module design shows minimum von Mises stress during oblique loading at implant crest module than during vertical loading. In D2 type of bone, maximum stresses were 16.64 MPa and 17.47 MPa observed in the coronal part of the bone corresponding to the neck of the implant under vertical and oblique loading, respectively
(a) von Mises stress within implant crest module for straight crest module during vertical loading. (b) von Misses stress within implant crest module for straight crest module during oblique loading. (c) von Mises stress within bone for divergent crest module during vertical loading. (d) von Mises stress within bone for divergent crest module during oblique loading.
Divergent crest module design shows minimum von Mises stress at crestal bone during vertical loading within bone, at implant crest module. Divergent crest module design shows minimum von Mises stress during oblique loading than vertical loading. In D2 type of bone, maximum stresses were 15.0 MPa and 12.25 MPa under vertical and oblique loading, respectively
(a) von Mises stress within implant crest module for divergent crest module during vertical loading. (b) von Mises stress within implant crest module for divergent crest module during oblique loading. (c) von Mises stress within bone for convergent crest module during vertical loading. (d) von Mises stress within bone for convergent crest module during oblique loading.
Convergent crest module design shows maximum von Mises stress at crestal bone, at implant crest module in all the models during both vertical and oblique loading. In D2 type of bone, maximum stresses were 20.86 MPa and 24.06 MPa observed in the coronal part of the bone corresponding to the neck of the implant under vertical and oblique loading, respectively
(a) von Mises stress within implant crest module for straight crest module during vertical loading. (b) von Misses stress within implant crest module for straight crest module during oblique loading. (c) von Mises stress within bone for divergent crest module during vertical loading. (d) von Mises stress within bone for divergent crest module during oblique loading.
The stresses calculated were used for the comparison between implant crest module designs. It was then drawn in to graphs to represent them. It was observed that the stresses were maximum in convergent crest module design and minimum in divergent crest module design under vertical and oblique loading within bone and at implant crest module
The design of an implant refers to the 3D structure of an implant system characterized by shape, type of implant–abutment interface, presence or absence of threads, thread design, surface topography and chemical composition. It is believed that the differences between these properties affect the force transfer characteristics of implants.
Crest module is that portion of a two-piece metal dental implant, designed to hold the prosthetic components in place, and to create a transition zone to the load-bearing implant body. Its design, position in relation to the alveolar crest, and an abutment–implant interface make us believe that it plays a major role in integration to both hard and soft tissues. Unfortunately, in most clinical conditions, early tissue breakdown leading to soft tissue and hard tissue loss begins at this region.
Zarb and Schmitt
Micromovements of an endosteal dental implant and excessive stress at the implant–bone interface have been suggested as potential causes for peri-implant bone loss and failure of osseointegration.
Bone is constantly remodeling itself to adapt to external stimuli in the surrounding environment, which is known as bone homeostasis. Wolff
In this study, all the optimum conditions were taken into consideration. First of all bone conditions, D2 is chosen as this type of bone most commonly found in the mandibular posterior region. CpTi is used as implant material as it is the most biocompatible material used for any endosseous implants. An engineering principle called the composite beam analysis states that when two materials of different moduli are placed together with no intervening material and one is loaded, a stress contour increase will be observed where the two materials first come in contact.
In FEA, the area of interest, the model (an implant and a part of the mandible in this situation), is split into a mesh of elements. Thus, solution to a complex mechanical problem can be obtained by dividing the problem domain into a collection of much smaller and simpler domains (elements), in which the field variables can be interpolated with the use of shape functions. An overall approximated solution to the original problem is determined based on variation principle. Different materials are defined by their mechanical properties, such as Young's modulus and Poisson's ratio. After defining the load, the problem is solved for each element initially and then a harmonious solution is produced.
Misch et al.
The effect of different implant crest module designs on stress distribution in D2 bone densities has not been studied extensively using FEA. Hence, this study was done using this method of analysis to evaluate the pattern of stress distribution when different implant crest module designs were used. The FE model created in this study was a multi-layered complex structure involving a solid implant and a layered specific crown. It is important to note that the stress in different bone qualities may be influenced greatly by the materials and properties assigned to each layer.
The results of the present FEA study revealed that crest module design affects stresses generated in the bone. Maximum von Mises stress was observed at the crestal region of the bone and crest module region of the implants in all the models. The divergent crest module design resists the crestal bone loss, gives better response on mechanical basis. In all conditions, the divergent crest module demonstrated the lowest maximum von Mises stresses in the crestal compact bone contiguous to the implant crest module, followed by the straight and convergent crest module design during vertical and oblique loading.
In the present study, the components of the implant models were considered to be single pieces. Furthermore, the wider the platform is, the wider will be the connection of the abutment actually used. The abutment–implant junction on the convergent–collar implant is closer to the compact bone than implants with straight or divergent collars. The stress concentration in the components of the convergent–collar implant may have a greater effect than those of the straight and divergent collars. This may have affected the results of this study. Furthermore, this study used uniform thread profiles, abutments, and prostheses in an effort to compare the different geometries of the implant crest module.
In the present study, effects of three different implant crest module designs were studied in D2 bone qualities. To achieve more realistic models and to extrapolate the results clinically, advanced digital imaging techniques can be used to model bone geometry in greater detail; the anisotropic and nonhomogeneous nature of the material needs to be considered; and boundary conditions must be refined.
The assumptions which were made regarding model geometry, material properties, applied boundary conditions, and the bone–implant interface can affect the accuracy of the FEA model which is a limitation of all FEA studies. The structures in the model were all assumed to be homogeneous and isotropic and to possess linear elasticity. In the actual situation, human mandibular bone properties were nearly orthotropic, and rarely ultimate strengths were investigated. Cement thickness layer was also ignored.
All interfaces between the materials were assumed to be totally bonded or osseointegrated. But in addition, modeling of the bone–implant interface should incorporate the actual osseointegration contact area in cortical bone as well as the detailed 3D trabecular bone contact pattern. In this study, because of the technical limitation, static loads were applied in the FEA instead of dynamic loads. The design of the occlusal surface of the model may influence the stress distribution pattern. In the current study, the locations for the force application were specifically described as central fossa (vertical loading) and lingual cuspal inclines of buccal cusps (oblique loading). However, the geometric form of the tooth surface can produce a pattern of stress distribution that is specific for the modeled form.
Within the limitations of this study, the following conclusions were seen that divergent crest module design results in minimum stresses at crestal bone and at implant crest module followed by straight and convergent crest module in ascending order of stress distribution. It may be inferred that the divergent crest module design resists the crestal bone loss, gives better response on mechanical basis, and appears to be a favorable choice for long-term bone maintenance.
Clinical implications
The crest module is the area of highly concentrated mechanical stress, where bone loss usually occurs due to overload and absence of stimulation or microbial contamination. The crest module design may positively contribute to the reduction of this problem and help to retain the bone–implant stability and osseointegration through the reduction of bone overload and bone stimulation.
Financial support and sponsorship
Nil.
Conflicts of interest
The authors of this manuscript declare that they have no conflicts of interest, real or perceived, financial or nonfinancial in this article.