This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
The aim of this study was to evaluate the effect of ceramic material types, degree of veneer translucency, and luting cement shades on masking the underlying dark dental substrate to achieve best esthetics.
In this in vitro study, 56 specimens each of 0.5-mm thickness were fabricated from two esthetic veneer materials Vita Enamic and Vita Suprinity, with two different translucencies, i.e., HT and T. To simulate the color of a dark underlying dental structure, background discs with C3 shade were fabricated using resin composite. The ceramic specimens with varying translucencies were cemented on the dark background of the resin composite with A1 and opaque white shades of resin luting cement. Color difference (ΔE) values from a reference color (A1 shade) were calculated using a spectrophotometer. The results were then statistically analyzed using three-way ANOVA test (α = 0.05).
The ΔE values of both ceramic systems were affected by both the degree of veneer translucency (P = 0.00) and the luting agent shade (P = 0.016). The use of an opaque luting agent and T translucency resulted in a decrease in the ΔE* values for all ceramics tested, regardless to the material type. Suprinity and Enamic showed similarity in the masking ability of dark substrate after cementation.
None of the 0.5-mm veneers of the two ceramic systems could reach A1 shade without a detectable color difference after cementation. The change in degree of veneer translucency was more effective than the change in luting agent shade in masking the underlying dark substrate.
There are numerous innovations and developments in many aspects of dentistry, but still, one of the main challenges that face dentists is to achieve an esthetically acceptable restoration. Esthetic restorations should reproduce the color and translucency of the adjacent natural teeth, to achieve no shade differences between them. The translucency of a restorative material provides the vitality and the natural look to the completed restoration.
Patients and dentists always demand esthetically successful restorations, so many treatment modalities have been proposed, and ceramic laminate veneers are considered one conservative esthetic approach with adequate reflection and transmission of light together with a good mechanical strength and high biocompatibility.
Shade matching of ceramic laminate veneers with adjacent natural teeth and masking the color of underlying tooth structure are common challenging issues. The color of the tooth/substrate, the thickness and type of ceramic material used, and the shade of resin cement selected are all contributing factors that affect the esthetic outcome of laminate veneers.
Masking ability can be determined by measuring the color difference (ΔE) between a uniform thickness of the material on black and white backgrounds.
In each clinical situation, one should decide how much translucency or masking ability is needed for optimal esthetics, and this could be decided by the shade of the underlying tooth structure or core buildup material, so the most appropriate ceramic material has to be selected in relation to each situation in terms of thickness and translucency.
One way to increase the masking ability of ceramic veneers is to increase their thickness;
Begum et al.
Calgaro et al.
In addition, Oh and Kim
The true effect of ceramic material types, degree of veneer translucency, and luting cement shades on masking the underlying dark dental substrate is still a controversial issue which needs more studies.
The null hypothesis of this study was that the color masking ability of a simulated ceramic laminate veneer restoration would not be influenced by the change in shade of the luting cement or the change in the veneer translucency.
In this in vitro study, two ceramic systems were used: Vita Enamic (Vita Zahnfabrik, Bad Sackingen, Germany) shade 1M2 and Vita Suprinity (Vita Zahnfabrik, Bad Sackingen, Germany) shade A1. A total of 56 rectangular specimens with final dimensions of 10 mm × 12 mm and 0.5-mm thickness were fabricated and divided into two groups (n = 28) according to the ceramic material (Enamic and Suprinity) and then subdivided into two subgroups (n = 14) according to the degree of ceramic translucency (HT and T), and then, each subgroup was subdivided into two subdivisions according to the shade of resin cement used A1 shade resin cement (n = 7) and opaque white shade resin cement (n = 7).
Specimens were cut from the ceramic blocks using IsoMet Saw 4000 (Buehler, Illinois, USA); then, the thickness of each specimen was verified using a digital caliper (Mitutoyo, Kawasaki, Japan). Vita Enamic and Vita Suprinity specimens were first ultrasonically cleaned with distilled water for 10 min, then Vita Suprinity specimens were crystallized in a porcelain furnace Ivoclar Programat P300 (Ivoclar Vivadent, Schaan, Liechtenstein) according to the manufacturer instructions, and then, they were left to bench cool.
The Vita Enamic and Vita Suprinity specimens were polished using a two-stage polishing system, especially designed for these materials. This procedure was done using a straight handpiece fixed to a dental surveyor. The prepolisher instrument was used at 7000 rpm along the samples for 1 min, then the high gloss polisher was applied at 4000 rpm for another 1 min till the surface appeared highly polished (as the manufacturer instructions), and then, the specimens were cleaned for 3 min with distilled water in ultrasonic cleaner.
To simulate the color of a dark underlying dental structure, background discs of color C3, with 20-mm diameter and 4-mm thickness, were made from resin composite Filtek™ Z250 shade C3 (3M™ ESPE™, Minnesota, USA), using a mold, especially designed for the composite substrate formation. The bonding surfaces of disks were adjusted by 600-grit wet silicon carbide paper into 4.0 ± 0.01-mm thick.
According to the manufacturer's instructions, for Enamic specimens, the unpolished surface was etched with Vita Ceramics Etch hydrofluoric acid gel 5% (Vita Zahnfabrik, Bad Sackingen, Germany) for 60 s, while for Suprinity specimens, the unpolished surface was etched for 20 s only. The hydrofluoric acid was rinsed off with forceful water spray, and then, the specimens were cleaned in an ultrasonic bath for 1–3 min in 98% alcohol.
Vitasil silane coupling agent (Vita Zahnfabrik, Bad Sackingen, Germany) was then applied to the etched and dried surface and dispersed gently with oil-free air, and then, it was left to react with the surface for 60 s. Cementation of the specimens was done using RelyX veneer resin cement (3M™ ESPE™, Minnesota, USA) A1 and white opaque shades.
A ring-shaped stopper with thickness (4.6 mm) was made for standardization and ensuring 0.1-mm cement thickness in all the specimens. The composite substrate was placed inside the ring, then the cement was applied, and the ceramic specimen with the treated surface toward the cement was then placed. Finally, force of 9.8N was applied
Vita Suprinity sample cemented to composite substrate using white opaque resin cement.
The analysis of the color was done using a spectrophotometer Vita Easyshade Advance 4.0 (Vita Zahnfabrik, Bad Sackingen, Germany). The Vita Easyshade was set to the restoration mode and the shade A1 was selected as the reference shade to compare the selected shade to the shade of the cemented samples. As ΔE from A1 decreases, the masking ability increases. For each specimen, three measurements were taken at the center and their average was recorded. After color measuring of each sample, the Easyshade was recalibrated.
Measuring of ΔE by Vita Easyshade.
Statistical analysis to compare the differences between the groups was done by three-way ANOVA test for multiple group comparisons. P ≤ 0.05 was considered for statistical significance.
The measure of the total difference of color between two objects is described by ΔE. The ΔE values were calculated for all groups by comparing the samples shade after cementation to the reference values of A1 shade. The mean and standard deviation of ΔE values of different groups of both materials are listed in
The lowest mean ΔE values were exhibited by Suprinity T samples cemented by white opaque shade of resin cement (ΔE = 3.65), while the highest mean ΔE values were exhibited by Suprinity HT samples cemented by A1 shade resin cement (ΔE = 7.05). From the results, it was found that there was no statistically significant difference between the two materials used with respect to the Δ E values (P = 0.784). There was statistically significant color difference between the T samples and HT samples in both materials (P = 0.00) and between samples cemented by opaque white resin cement and samples cemented by A1 shade of resin cement in both materials (P = 0.016). The P values of ceramic material type, degree of veneer translucency, and cement shade are listed in
Line graph representing estimated marginal means for ΔE of different groups.
In this in vitro study, the null hypothesis that the color masking ability of a simulated ceramic laminate veneer restoration would not be influenced by the change in shade of the luting cement, or the change in the veneer translucency was rejected.
Ceramic laminate veneers can be considered as one of the best treatment options used to alter the color and shape of anterior teeth with poor esthetics as discolored, fractured, or misaligned teeth. Preparations for ceramic veneers are very conservative which remain within the enamel and thus being more conservative and allow better bond strength to tooth structure than when bonding to dentine.
This implies using ceramic materials with minimum thickness and increased translucency; however, they have to mask the underlying discolored tooth structure without increasing their thickness that is why our study was conducted to evaluate the effect of type of veneer material, degree of veneer translucency, and luting cement shade on masking the color of the underlying dark substrate without increasing the thickness of the restoration (0.5 mm).
Two shades of the same resin cement (A1 shade and white opaque shade) were used as the first represents the desired shade to reach in our study, while the other is usually advocated in discolored areas. 0.1-mm cement thickness was used to reproduce clinical condition restoration, as recommended by some studies for stress distribution of the interface between ceramic and resin cement.
Measurements were done using Vita Easyshade Advance 4.0 spectrophotometer, as it was used in many previous studies and is characterized by being accurate, fast, easy, simple, and accuracy which may reach 92.6%.
Varying degrees of veneer translucency influenced the ΔE evaluated, overall presenting higher ΔE values when high translucency veneers were used, regardless of the luting agent while ceramics with T translucency showed lower ΔE values, promoting higher masking of the darkened background. These results were in agreement with Chu et al.
The shade of luting agent also had an effect on the color masking ability of the veneers. The use of an opaque luting agent resulted in lower Δ E values when compared to the A1 cement. This might be due to the fact that difference in color between different shades of resin cements is due to different amounts of opacity “ingredients” in the cement.
Concerning the effect of the ceramic material, it was found that there was no significant difference between the two materials in masking ability which might be due to the small thickness of the samples (0.5 mm) which minimized the effect of the material itself on the final results. In fact, it has been reported that a decrease in ceramic thickness to 0.5 mm will significantly increase their relative translucency and become more affected to change in resin cement shades.
Regarding the interaction between the variables in this study, degree of veneer translucency was found to be more effective in masking the underlying discolored substrate than the luting agent shade and this might be due to the cement having only 0.1-mm thickness which is way less than that of the ceramic (0.5 mm) with an overall less effect of cement shade on color production.
Further studies may be needed to evaluate the clinical implications of these findings. In some clinical situations, varying degrees of dark stains need to be masked. Therefore, the interaction between the background color and the thickness of the veneer needs to be investigated.
Within the limitations of this study, it was concluded that:
An appropriate choice of the degree of ceramic veneer translucency as well as luting agent shade is important for masking the color variations of the underlying tooth structure and achieving optimum esthetic results None of the 0.5-mm thick veneers of the two ceramic systems could reach A1 shade after cementation without detectable color difference Suprinity and Enamic showed similarity in the masking ability of dark substrate after cementation The color masking ability of the ceramic systems was affected by both the luting agent and the degree of ceramic translucency, where the change in the degree of veneer translucency was more effective than the change in luting agent shade in masking the underlying dark substrate.
Financial support and sponsorship
Nil.
Conflicts of interest
The authors of this manuscript declare that they have no conflicts of interest, real or perceived, financial or nonfinancial in this article.