This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
Conventional drug mixtures used in regenerative endodontic procedures have a toxic effect and no consensus has been reached about their best composition and concentration. Therefore, the aim of this study was to determine minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum biofilm inhibitory concentration (MBIC) of the antimicrobial preparations and to compare their antimicrobial efficacy on bovine dentin infected by Enterococcus faecalis.
For this original ex vivo investigation, prepared concentrations (MIC, MBC, and MBIC) of triple antibiotic paste (TAP), double antibiotic paste (DAP), modified triple antibiotic paste (MTAP)-1, MTAP2, co-amoxiclav, and calcium hydroxide (CH) were added to the prepared bovine dentin blocks (which incubated in E. faecalis suspension previously) and incubated for 3 days. The samples were subsequently prepared for culture and CFU counts. Statistical analysis of data was carried out using one-way analysis of variance and post hoc tests. The statistical power was set at P < 0.05.
All medicament groups significantly showed an antimicrobial efficacy compared with negative control (without antibiotic) (P < 0.001). TAP, DAP, co-amoxiclav, and CH (at its MBC value) were significantly capable of eliminating E. faecalis biofilm and showed no significant difference in comparison with positive control (complete biofilm removal) (P < 0.05).
TAP, DAP, co-amoxiclav, and CH (at its MBC value) could effectively eliminate biofilm bacteria on the dentin surface. Antimicrobial efficacy of other medicaments containing cefaclor or clindamycin was limited.
Pulpal necrosis and infection of the root canal system are among common complications following traumatic injuries to immature permanent teeth. Successful management of traumatized immature teeth with pulpal necrosis is contemplated a considerable clinical challenge due to the presence of thin and diverging dentinal walls and open apices.
Recently, regenerative endodontic procedures (REPs) have drawn attention for treating infected immature necrotic teeth, and in some cases, it is considered as the most favorable treatment option. Contrary to previous treatments (long-term intracanal use of calcium hydroxide (CH)
Because of the weakness of dentinal walls in such teeth, mechanical debridement is of limited value and more emphasis is placed on the use of chemical irrigants and intracanal medicaments. Although CH had historically been used in REPs, use of antibiotics was taken into consideration as an alternative because of two major CH limitations, including its negative effect on biomechanical properties of dentin
Because root canal infections are commonly polymicrobial in nature, a mixture of some antibiotics is used to remove intracanal microorganisms. In many of the studies, this antibiotic mixture has been used as a 1000 mg/ml paste. However, a number of studies declared that medicaments with high concentrations might have toxic effects on stem cells compromising regeneration process.
For the assessment of the effectiveness of antibacterial preparations, biofilm inhibition capability is considered an important criterion. Biofilm formation is one of the most important factors in bacterial resistance of Enterococcus faecalis species and because the planktonic form of this microorganism is not able to reproduce the clinical conditions of infected root canals, E. faecalis biofilms have been more focused in recent studies.
To date, limited studies have focused on antimicrobial potency of commonly used preparations in REPs using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum biofilm inhibitory concentration (MBIC) values in equalized clinical conditions.
Therefore, the aim of this study was to evaluate the antibiofilm effectiveness of all commonly used and proposed drugs at all three concentrations against E. faecalis as a resistant bacterial species on bovine dentin.
Bacterial species and culture medium
In this original ex vivo study, a standard species of E. faecalis (ATCC29212) was used. Initially, a 24-h culture was prepared on a brain–heart infusion (BHI) agar plate (Merck, Darmstadt, Germany) to pass the bacteria from the stationary state. After 24 h, 0.5 McFarland standard of the bacteria was prepared in Mueller-Hinton Broth (MHB) medium (Merck, Darmstadt, Germany). The 0.5 McFarland turbidity (containing 10 8bacteria) was confirmed at the wavelength of 625 nm (between 0.08 and 0.11). Afterward, the 0.5 McFarland was diluted to a 1:100 ratio to determine the concentrations used for the study.
Preparation of the drug primary stock solutions
Antibiotic stock solutions were prepared by dissolving equal portions of United States Pharmacopeia (USP)-grade antibiotic powders (Sigma-Aldrich Chemie GmbH, Germany) in distilled water. CH solution was prepared by stirring CH powder (Golchai Co., Iran) in distilled water
Stage I: Determination of minimum inhibitory concentration, minimum bactericidal concentration, and minimum biofilm inhibitory concentration values of the antimicrobial preparations
The method used for the determination of MIC, MBC, and MBIC values was the same used by Sabrah et al.
Minimum inhibitory concentration determination
After preparation of the drug primary stock solutions, MIC determination was carried out through 2-fold dilution method in a triplicate fashion. In summary, E. faecalis culture was placed in 96-well plates (SPL, SPL Life Science Co., Korea) containing MHB culture medium, exposed to 1:10, 1:20, 1:40, 1:80, 1:160, etc., dilutions of drug stock solutions and incubated for 24 h at 37°C. After 24 h, the plates were read at the wavelength of 540 nm by ELISA reader (Anthos 2020, Biochrom Co., UK). MIC was determined as the lowest possible concentration that could cause turbidity of ≤0.05
Minimum bactericidal concentration determination
After reading MIC values, a 10 μL sample was taken from the wells of the MIC row as well as those of the upper rows to be cultured in BHI agar medium. All plates were incubated at 37°C for another 24 h. Afterward, BHI agar culture plates were removed from the incubator and were evaluated for growth/nongrowth of bacterial colonies. The plate with nongrowth or elimination of ≥99.9% of bacteria was considered as the antibiotic concentration with bactericidal effect
Minimum biofilm inhibitory concentration determination
To determine the MBIC values, 1:100 suspension of 0.5 McFarland was prepared. Using flat-bottom 96-well plates (SPL, SPL Life Science Co., Korea). E. faecalis culture was exposed to 1:10, 1:20, 1:40, 1:80, 1:60, etc., dilutions of the drug stock solutions in wells containing MHB culture medium for 24 h. Then, the wells were initially rinsed twice with sterile saline and subsequently fixed with 10% formaldehyde solution. After two more times of sterile saline rinse, they were stained with 0.5% filtered crystal violet for 30 min. Following three times of sterile saline rinse, 200 μL 2-propanol was added and the plates were diluted to 1:5 and read by ELISA reader at 490 nm wavelength after 1 h. The MBIC values were determined through comparison of the resultant turbidity with control. Because, in CH samples, biofilm formation was observed in all rows, MBIC was not defined
Preparation of dentin samples
A total of 126 bovine teeth were washed, and the soft tissue remains was removed. After crown sectioning using a diamond disk, the teeth were sectioned along the buccolingual plane, obtaining two halves for dentin specimen (4 mm × 4 mm × 1 mm) preparation. The cementum was removed, and the specimens were wet-finished with SiC papers. The samples were initially placed in 2.5% sodium hypochlorite ultrasonic bath followed by 17% ethylenediaminetetraacetic acid, each for 3 min to remove the smear layer. The samples were then rinsed with sterile saline solution for 10 min before being sterilized by autoclave.
The samples were subsequently rinsed twice with 0.1 M phosphate-buffered saline (PBS) (pH = 7.4) for 1 min each time. The samples were then placed in another 24-well plates each containing 1 mL PBS with antibiotics in their MIC, MBC, and MBIC dilutions. Six dentin samples were allocated to each antibiotic concentration. Positive (n = 6) and negative control (n = 6) groups were also considered. The plates were incubated for 3 days and then rinsed twice with sterile saline for 1 min each time. Each sample was entered in a vial containing 1 mL of 0.9% saline solution, sonicated for 20s, and vortexed for 30s. Eventually, the contents of each vial were diluted to 1:10, and 20 μL was added to BHI blood agar for colony counts. After 24-h incubation, colony counts and calculation of CFU was carried out.
Scanning electron microscopic evaluation
Among all dentin samples, 6 blocks were subjected to scanning electron microscopic (SEM) evaluation; 2 samples were evaluated after sterilization to confirm sterility and to evaluate the quality of smear layer removal
Scanning electron microscopic evaluation of dentin samples to confirm the sterilization and smear layer removal processes. Scanning electron microscopic evaluation of dentin samples to confirm bacterial biofilm formation. Scanning electron microscopic evaluation of dentin samples in positive control group (10 mg/mL triple antibiotic paste) for confirmation and quality assessment of biofilm removal.
Therefore, the samples were fixed in 2.5% glutaraldehyde for 1 h and then were dehydrated using a series of ethanol concentration (10%, 25%, 50%, 75%, 90%, and 100%) each for 15 min. Then, the samples were gold coated and evaluated by SEM (Zeiss DSM 960A, Germany).
Two-way analysis of variance (ANOVA) was statistically used to evaluate the effects of antibiotic type and concentration (MIC, MBC, and MBIC) against bacterial biofilm. According to the significant interaction of these two factors on each other, the relationship of the three antibiotic concentrations with the drug antibacterial activity as well as the comparison of all antibiotic types in each concentration was carried out using one-way ANOVA and post hoc tests. The statistical significance was considered as <0.05 (P < 0.05).
SEM evaluation after sterilization revealed complete removal of microorganisms and smear layer. Electron micrographs after biofilm formation showed the presence of E. faecalis biofilm, so that E. faecalis cocci were morphologically detected and confirmed on dentin surface. Eventually, scanning electron micrographs taken from the positive control group revealed effective removal of biofilm at the used concentration (10 mg/mL). Descriptive statistics pertaining to antimicrobial activity of antibiotic preparations at their MIC, MBC, and MBIC are disclosed in
The results of this study showed that all drug preparations had a significant antibacterial effect in comparison with negative control (P < 0.001). However, only TAP, DAP, co-amoxiclav, and CH (at its MBC value) were effective in the removal of E. faecalis biofilm and did not have any significant difference with positive control group at their (P > 0.05)
Comparison of antimicrobial activities in different drug preparation at their minimum inhibitory concentration, minimum bactericidal concentration, and minimum biofilm inhibitory concentration with each other and with the positive control group (*
Biofilm formation is an outstanding feature of endodontic pathogens, and in fact, apical periodontitis is considered a biofilm-induced disease.
In recent years, higher concentration of antibacterial agents used in REPs raised a concern of stem cell toxicity.
In this study, E. faecalis was used, which is the most important bacterial species in therapy-resistant endodontic infections and persistent endodontic disease conditions.
This investigation aimed at bacterial biofilm elimination of some antimicrobial preparations at their MIC, MBC, and MBIC values in a bovine dentin model. Bovine dentin can be a potential alternative to human dentin in ex vivo studies because of its greatest similarity among mammalian species to human dentin
Contrary to the differences, both studies showed that TAP, DAP, and CH were effective in much lower concentrations in comparison with those proposed by AAE clinical considerations for a regenerative procedure.
Several studies have focused on the effect of antibiotic-containing scaffolds on bacterial biofilm,
Studies concerning TAP, DAP, and CH are numerous, but the mixture of ciprofloxacin–metronidazole–cefaclor and also ciprofloxacin–metronidazole–clindamycin has scarcely been investigated and the studies are at the level of case reports.
Our results showed that co-amoxiclav significantly eliminated the biofilm bacteria in lower concentrations. This finding is in accordance with Kaur et al.
Regarding the results of the current investigation, it can be stated that TAP even in lower concentrations can be considered as an effective antimicrobial preparation in eliminating biofilm bacteria from the dentin surface. DAP was also comparable with TAP in terms of its potency in the elimination of biofilm bacteria. Other investigated drug preparations were of limited value, especially when REPs are indicated for teeth with failed initial RCTs or in cases of E. faecalis biofilm contaminations. More extensive investigations are recommended to evaluate the efficacy of minimum antimicrobial values of different intracanal medicaments on polymicrobial biofilms and their application and influence in antibiotic-releasing scaffolds.
Acknowledgments
Our grateful thanks are extended to Dr. Fereshteh Jabalameli for laboratory procedures and Dr. Ahmad Reza Shamshiri for his help in doing the data analysis.
Financial support and sponsorship
This study was supported by Tehran University of Medical Sciences (grant no: 35166).
Conflicts of interest
The authors of this manuscript declare that they have no conflicts of interest, real or perceived, financial, or nonfinancial in this article.
Triple antibiotic paste (TAP): 16.5 mg of each drug was used to prepare TAP stock solution, i.e., metronidazole, ciprofloxacin, and minocycline (Sigma-Aldrich Chemie GmbH, Germany) were carefully weighed using a technical scale (Sartorius BP211D Analytical Balances, Germany) to prepare a total of 50 mg drug mixture. Then, the mixture was dissolved in 5 mL distilled water to create a [INSIDE:1] concentration of the stock solution DAP: 25 mg of each metronidazole and ciprofloxacin (Sigma-Aldrich Chemie GmbH, Germany) was measured and a total of 50 mg drug mixture was dissolved in 5 mL distilled water to make a [INSIDE:2] concentration of the drug stock solution Modified triple antibiotic paste 1: This mixture contained metronidazole, ciprofloxacin and cefaclor (Sigma-Aldrich Chemie GmbH, Germany). 16.5 mg of each antibiotic powder was weighed and a total of 50 mg drug mixture was dissolved in 5 mL distilled water to create a [INSIDE:3] concentration of the primary stock solution Modified triple antibiotic paste 2: This medicament contained metronidazole, ciprofloxacin and clindamycin (Sigma-Aldrich Chemie GmbH, Germany). 16.5 mg of each drug was weighed and a total of 50 mg drug mixture was dissolved in 5 mL distilled water to create a [INSIDE:4] concentration of the primary stock solution Co-amoxiclav: 10 mg of co-amoxiclav (Sigma-Aldrich Chemie GmbH, Germany) was dissolved in 1 mL distilled water to create a [INSIDE:5] concentration of the primary stock solution Calcium hydroxide (CH): 16 mg of CH powder (Golchai Co., Iran) was weighed and dissolved in 1 mL distilled water to make a [INSIDE:6] concentration of primary stock solution.
Gaetti-Jardim Jr E, Landucci LF, Dezan Jr E, Okamoto AC, Holland R. Susceptibility of microorganisms isolated from necrotic pulps to calcium hydroxide. Arch Health Invest 2013;2:5.