This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
One of the drawbacks of tooth-colored dental restorations is their discoloration over time. The present study aimed to determine the effect of four categories of pediatric medications, including analgesics, antibiotics, anticonvulsants, and multivitamins, on two types of tooth-colored dental materials, namely, composite resins and glass ionomer cements.
In this in vitro study, a total of 40 specimens with disc shapes (with a diameter of 5 mm and thickness of 2 mm) were prepared from each material and immersed in eight different drugs for 2 min three times a day for 1 week. The values of the baseline color were calculated based on the CIE (International Commission on Illumination) L*a*b* system. After 7 days, ΔE values were calculated. Two-way analysis of variance was employed for statistical analysis. Statistical significance was defined at 0.05.
Statistical analysis showed that there were significant differences between ΔE and different restorative materials as well as ΔE and drug types (P < 0.001).
According to the results of this in vitro study, all the four types of drugs caused the discoloration in all the restorative materials, and the color change values were affected by the type of used drug and restorative material.
Color stability is an important requirement affecting the choice of restorative materials. At present, esthetic appearance is desired by both children and parents. To meet this increased esthetic demand, various compositions of restorative materials have been developed for clinical use. The most common tooth-colored restorative materials used in pediatric dentistry include composite resins, glass ionomer cements (GIC), and compomers.
Several advantages, including physicochemical adhesion to tooth tissues, fluoride release, anticaries properties on restoration edges, thermal expansion coefficient similar to that of the natural tooth tissue, and elevated remineralization in adjacent proximal caries, are reported for GIC.
Equia contains an extremely viscous type of GIC (EQUIA Fil, previously known as Fuji IX GP Extra) covered with a newly developed nanofilled coating material (Equia Coat, formerly known as G-Coat Plus). The developed material was fortified through alternating the powder/liquid ratio, particle size, and distribution. Equia was developed for application in permanent restoration belonging to Class I, II, and V cavities.
Liquid oral medicines are usually recommended to treat chronic diseases for prolonged periods.
Specimen preparation
The present in vitro study was approved by the Research Ethics Committee of Ardabil University of Medical Sciences, Ardabil, Iran (with the ethics code of IR.ARUMS.REC.1396.246). Four groups of drugs commonly consumed by children were tested in the present study
A total of 160 samples with disc shapes were fabricated using each material (with a diameter of 5 mm and thickness of 2 mm) according to the manufacturer's instructions using plastic molds. A light cure was applied on the top and bottom surfaces of each specimen for 20 s using a light-emitting diode light-curing unit. All the discs with voids or irregularities in shape or surface were excluded from the study. The specimens were randomly classified into four groups (n = 40; from each material). After the removal of the specimens from the molds and provision of smooth surfaces using Mylar strips, the samples were maintained in distilled water at 37°C for 24 h for rehydration and completion of their polymerization.
Staining process
The samples (n = 5) were randomly selected from each material and immersed in each of the eight drug liquids three times/day for 2 min at 37°C within a test period of 7 days. All the solutions were renewed on a daily basis. The specimens were kept in artificial saliva (Glandosan ®, Helvepharm AG, Frauenfeld, Switzerland) between the immersion periods.
Color change measurement
The restorative materials' baseline color was measured using a digital spectrophotometer (Vita Easyshade, Vita Zahnfabrik, Bad Säckingen, Germany). Before the measurement of the specimens' color, the device was calibrated with the use of its calibration block based on the manufacturer's instructions. Following the completion of the immersion time, the specimens' color was calculated using the spectrophotometer as previously described. Changes in each specimen's color were investigated according to color specifications with the use of the CIE L*a*b* color space system.
A three-dimensional color space containing lightness (L), red-green (a), and yellow-blue (b) components are represented by the CIE L*a*b* system. The color variation (ΔE) was measured 1 week after storage and at baseline as two color positions with the use of the following formula:
ΔE (L*a*b*) = ([ΔL*]2+ [Δa*]2+ [Δb*]2]1/2.
Where ΔL* is the difference between the L* values; Δa* is the difference between the a* values; and Δb* is the difference between the b* values.
Statistical analysis
The Kolmogorov–Smirnov test was utilized to assess the normal distribution of the collected data. Two-way analysis of variance (ANOVA) was employed to assess the type of material and effect of the staining agent on color change. The SPSS software (version 23; SPSS, Chicago, Ill., USA) was used for data analysis.
The maximum and minimum ΔE* values were observed for sodium valproate and cephalexin in EQUIA Fil conventional reinforced GIC, respectively. Significantly higher and lower ΔE* values were reported for vitane and ibuprofen in resin-reinforced GIC, respectively. Cephalexin and vitane induced the maximum and minimum ΔE* values in Filtek Z250 XT, respectively. In Filtek Z350 XT, the maximum and minimum ΔE* values were observed for cephalexin and acetaminophen, respectively
As the results of two-way ANOVA demonstrated, the interactions between all the materials and staining drugs were significant (P < 0.001). The Games-Howell posthoc test was utilized to analyze restorative materials and drugs used in the present study. Subgroup analysis also confirmed significant differences between ΔE and different restorative materials as well as ΔE and drug types (P < 0.001). However, no significant difference was detected between the color change values of various drugs in the materials
Since oral restorations are persistently exposed to staining foods and beverages, the color durability of tooth-colored dental materials is a crucial element. The replacement of the discolored restoration, especially in pediatric patients, is associated with increased costs and time of parents as well as behavior management problems in children.
To the best of our knowledge, there have only been a limited number of studies on the effect of drugs on dental materials in children. Therefore, the present study attempted to assess the impact of four pediatric medication types on color stability in various tooth-colored restorative materials. For the prevention of bias resulting from polishing and simulating the most extreme but clinically related situation, the surface did not undergo polishing, and surface smoothness was provided by Mylar strips.
In the present study, the color measurement was calculated with CIE Lab because it is a repeatable method and sensitive for small color changes similar to the method used in the abovementioned studies.
The color stability of esthetic restorative material is relevant to resin matrix hydrophilicity, filler particle dimensions, polymerization depth, and surface properties.
In the present study, GIC showed a greater color change, compared to composite resin in all the immersion drugs. The relative susceptibility of GIC for staining could be attributed to the porosity of the glass particles, dehydration after setting and drying, and microcracks allowing staining and discoloration of the restoration. In addition, the glass filler particles can absorb water onto the surface rather into the bulk of the material;
Resin-modified glass ionomer (RMGI) showed a greater color change in comparison to other restorative materials in all the immersion drugs. The RMGI and conventional GIC both have a similar ion-releasing glass; nevertheless, smaller filler particles were utilized in RMGI. The light triggers the primary setting reaction subsequently undergoing an acid-base reaction after water absorption.
Equia Forte Fil is offered in the form of encapsulation, simplifying material transportation to the cavity without the need for manual mixing. In this study, Equia Forte Fil demonstrated lower discoloration in comparison to RMGI. The reason might be the nanofilled coating of resin, enabling an enhanced initial filling material stabilization in the curing stage as well as elevated infiltration and closure in GIC superficial defects.
Tüzüner et al. studied the effects of pediatric drugs on color stability in different restorative materials among children. They reported significant discoloration values in composites in comparison to those of GIC and compomers. The results of the aforementioned study showed no interaction between restorative materials and drugs which is contrary to the findings of the current study.
Nanohybrid composite resins are potential alternatives to conventional composite due to better strength, gloss, and lower shrinkage.
The results of a study carried out by Khatri and Nandlal revealed that an examined conventional composite resin had higher susceptibility to color change within various media over an extended period in comparison to nanocomposites.
In another study, Yazici et al. indicated that nanocomposites (Filtek Supreme) have greater color changes than microhybrid composites (Clearfil AP-X) 30 days after dipping in tea.
The present in vitro study did not mimic the real oral environmental conditions and multiple factors affecting discoloration which is considered a limitation. However, it is recommended to perform further studies for the evaluation of surface irregularities, degree of polymerization, and water sorption, finishing, and polishing of these restorative materials. Furthermore, a study should be carried out on the role of different staining properties of examined pediatric drugs in stabilizing the color of restorative dental materials, probably in terms of sugar contents and pH levels.
Despite the limitations of the current study, color changes were observed in all restorative materials after immersion in drugs. In addition, GIC had a greater color change in comparison to nanohybrid composite resins.
Financial support and sponsorship
Nil.
Conflicts of interest
The authors of this manuscript declare that they have no conflicts of interest, real or perceived, financial or nonfinancial in this article.