This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
Although missing tooth is not life-threatening, it affects the quality of daily life. Stem cells have emerged as an important player in the generation and maintenance of many tissues. The role of scaffolds has changed from a passive carrier to a bioactive matrix, which can be used to induce cellular behavior. The aim of this study was to determine the possibility of regeneration of dentin-pulp complex with dental pulp stem cells (DPSCs) in an animal model.
In this animal study after extraction of DPSCs and cultivation, 10 types of scaffolds were made by using platelet-rich plasma (PRP), cancellous bone, and collagen pad. They were inserted in different parts of the dog's mouth. After the 4 thmonth, the area was operated, and the scaffolds were removed.
Microscopic examination revealed no sign of cell differentiation and formation of new structures in those models which used collagen scaffolds. However, the dentin-pulp complex emerged in models that the combination of bone scaffolds and PRP or stem cells was used.
Using bone scaffolds in combination with PRP or DPSCs to regenerate dentin-pulp complex in dog helped odontoblastic and pulpal differentiation as well as the formation of predentin and tubular dentin.
Although damaged or missing tooth is not life-threatening, it clearly influences the quality of an individual's daily life. Stem cells have emerged as significant players in the generation and maintenance of several tissues of the body.
Recent advancements in stem cells biology reported the presence of these undifferentiated precursor cells in dental pulp, as well.
Yu's studies proved that the soluble factors produced by the germ cells of rat incisor can induce differentiation of DPSCs and resulted in regeneration of regular-shaped dentin-pulp complex.
Three-dimensional (3D) cell culture systems have resulted in the development of useful models for physiological assessment of stem cells in response to the surrounding environment. The role of scaffolds has changed from a passive carrier towards a bioactive matrix which can induce the desired cell behavior.
Several biomaterials are available including synthetic or natural polymers, extracellular matrix, hydrogels, bioceramics, and self-assembling systems. Each material has its specific structure, chemical composition, formability, and analytical profile.
New approaches of dental pulp formation rely on materials such as collagen, polyester, chitosan, and hydroxyapatite. The aspects to be considered in engineering the dentin-pulp complex are angiogenicity, cell-matrix interactions, combining growth factors, matrix analysis, mineralization, and infection control.
In this experimental animal study, a dog was enrolled considering all the ethical principles related to animals. All procedures performed in the current study were approved by Shiraz University of Medical Sciences research and Animal Ethics Committee (#8794127) in accordance with Animal Research Reporting of in vivo Experiment guideline for reporting animal researches.
Based on the radiology image, the dental pulp was decided to be extracted from the maxillary left canine. By using a disc, the tooth was cut slightly above the gingiva. Pulp pieces were extracted from the pulp chamber by using broach file. They were collected in test tube containing Phosphate-buffered saline - ethylenediaminetetraacetic acid (PBS-EDTA), 1% penicillin or streptomycin, and 1% fungizone. The pulp tissue was sectioned into smaller pieces under sterile conditions and was subjected to enzymatic digestion and periodic shakes. The obtained single-cell suspension was passed through a cell strainer, centrifuged to eliminate the enzymes, and the cells were resuspended in the medium.
Isolated cell culture
The obtained single-cell suspension was plated in culture flasks which were enriched with mM4 Glutamax, 100 V/mL penicillin, 100 μg/mL streptomycin, and 20% fetal bovine serum (all by Gibco Invitrogen; USA) through α-minimum essential medium. The flasks were then incubated in 5% carbon dioxide and 90% moisture for 48 h. After that, the unadhered cells and debris were removed, and a new medium was added to the attached cells. The culture medium was replaced twice weekly until the accumulation of cells reached 80% in the flask. The adherent cells were released with trypsin-EDTA and were passaged again. To cultivate cells in designed scaffolds, a suspension of 200,000 cells in 200 μm medium was prepared and centrifuged in microtube. The cells were then transferred into the scaffold.
Preparing the platelet-rich plasma
Blood sample was taken from the cephalic vein of the dog's right hand and was poured into 10 test tubes containing sodium citrate. The tubes were centrifuged and the transparent plasma concentrated at the top of the tube was isolated by using pipette and placed in four other tubes. They were centrifuged once more; then, the top half of the tube was removed, and the remaining half was collected in pipette. The obtained PRP was stored in the freezer until the media were prepared.
Preparing three-dimensional scaffolds
In this study, 10 types of scaffolds were designed as follows;
Cancellous bone cube (5 mm × 5 mm × 5 mm cube-mineralized bone, Tissue Regeneration Corporation, Tehran, Iran), with no PRP injection, no stem cell or membrane, soaked in the culture medium Cancellous bone cube soaked in PRP with no surrounding membrane Collagenous cube (5 mm × 5 mm × 5 mm collagen foam, Tissue Regeneration Corporation, Tehran, Iran) with no PRP injection, no stem cell or membrane, soaked in the culture medium Collagenous cube combined with PRP injection, with no surrounding membrane Cancellous bone soaked in culture medium and surrounded with 1 mm thickness 2 cm × 2 cm membrane (Ceno Membrane, Tissue Regeneration Corporation, Tehran, Iran) Collagenous cube soaked in culture medium and surrounded by the membrane Collagenous cube combined with stem cells injection Cancellous bone cube combined with stem cells injection Sandwich 1: Stem cells injected into the central cancellous bone cube and surrounding it with rectangular pieces of cancellous bone cube soaked in PRP, and covering it with membrane Sandwich 2: Soaking the cancellous bone cube in the center in PRP, surrounding it with cancellous bone rectangular cubes which were injected with stem cells, and finally covering it with membrane.
Inserting the media into the animal's oral soft tissue: The designated media were stored in PBC-EDTA solution with 1% penicillin, streptomycin, and 1% fungizone. On the operation day, the dog was prepared for the surgery, the media were inserted into different parts of the animal's oral soft tissue, including the buccal vestibules of both upper and lower jaws and lip commissures with at least 3 cm far from each other.
The dog was taken care of for 4 months to evaluate the results based on the Animals (Scientific Procedures) Act 1986. Dog was housed in 10 m 3cage with shelter and natural light of day and night; given 3 meals of soft diet for the first 2 weeks and natural diet for the rest of this period. With an emphasis on the animal survival after 4 months, the soft tissue was re-operated and the media were removed. They were fixed in formaldehyde and sent to the oral and maxillofacial pathology laboratory of Shiraz Dental School for preparing tissue sections and microscopic assessment.
Microscopic evaluation of the dog's oral tissue slides revealed no sign of cellular differentiation and regeneration in models which used collagenous scaffolds. There were only foci of inflammatory cells, granulomatous reactions, including accumulations of lymphocytes, histiocytes, and multinucleated giant cells. On the contrary, in all models in which a combination of bone scaffold and PRP or stem cells was used, definite structures composed of hard tissue in the center and surrounding layers of mesenchymal spindle cells were observable
In models with combination of bone scaffold and platelet-rich plasma (a) or stem cells (b), definite structures composed of hard tissue in the center and surrounding layers of mesenchymal spindle cells were observable (H and E staining, ×100).
These structures were numerous and elliptical and huger in sandwich designs
In sandwich designs, huge structures of central hard tissue and peripheral spindle cells were present (H and E staining, ×200). Mesenchymal spindle cells were aligned around hard tissue in 4–6 layers (a) (H and E staining, ×200), innermost cells were similar to odontoblasts (b) (H and E staining, ×400). Central hard tissue had tubular pattern (a) with round to oval-shaped openings (b) in regular parallel arrangement in some areas and completely irregular in some others (H and E staining, ×200). Less mineralized hard tissue at periphery indicated peripheral predentin near odontoblastic layer (H and E staining, ×400). Surrounding mesenchymal cells with loose myxomatous arrangement indicating pulp tissue developing below the odontoblastic layer in bone scaffold with platelet-rich plasma (a) and with stem cells (b) (H and E staining, ×400).
Regenerative dentistry is currently considered as an effective treatment to restore the tooth function. When the tooth is damaged, dental pulp starts dentin regenerating during which new cells, micro-environments, and matrices are created to restore the damaged area.
The current study employed collagen pad with cotton consistency as scaffold in half of the models, which was never investigated before. They did not show favorable structural strength in regenerating dentin-pulp complex in vivo after 4 months. In a similar in vitro study, Donzelli et al. used the culture of bone marrow mesenchymal stem cells of adult mice in a sort of collagenous scaffold made of gingistat (a type of hemostatic surgical dressing). They used osteogenic supplements to induce in vitro bone differentiation.
Nevertheless, it is far more difficult to chemically and mechanically control the micro-environments around the implanted scaffold in vivo (animal samples). Particularly in animals such as dog, there is no control on the animal's behavior and taking care of the surgical site concerning the pressure, mechanical stresses, and infection. Hence, the complete decomposition of collagen scaffolds used in this study was justifiable; although, the precise mechanism of decomposition process requires to be more thoroughly investigated.
Employing the scaffolds of mineralized bone in tissue regeneration was positively effective. Honsawek et al. and Shi et al. placed the mesenchymal stem cells derived from adipose tissue into the demineralized bone; their scaffold guided the bone differentiation. Similarly, using the mesenchymal stem cells derived from the umbilical cord in this scaffold did show osteogenic differentiation.
By using cancellous bone scaffolds in the dog's oral cavity, dentin-pulp regeneration was observed in all combination designs, including PRP, DPSC cells, and sandwich models. In Yu et al. study, using the scaffold per se and in association with DPSCs was detected to be effective. In that study, the soluble factors produced by the germ cells of rat incisor induced the differentiation of DPSCs and resulted in regeneration of regularly-shaped dentin-pulp complex. It indicates that DPSCs can also induce differentiation of dentin-pulp complex. Compared with other sources of stem cells such as bone marrow stromal stem cells, the DPSCs functioned more efficiently in bioengineering of dental regeneration.
When the stem cells are placed within a 3D scaffold of the substrate, not only they maintain their physiologic strength but also function better in the regeneration process.
Zhang et al. used an aqueous silk scaffold and 3D silk scaffold based on hexafluoro-2-propanol (HFIP). Not only did they support the formation of osteodentin but also guided the size and shape of formed osteodentin. Comparing these two scaffolds in terms of interaction with DPSCs revealed that destruction occurred faster in the aqueous scaffold; whereas, the HFIP-based 3D silk scaffold better supported pulp regeneration.
Regenerative potential of platelets was first introduced in the 1970s, just when they were found to contain growth factors responsible for increasing the collagen production, cell mitosis, blood vessel growth, and induction of cell differentiation. The platelets were increasingly used in tissue regeneration over time.
In the present study, regeneration of dentin and pulp tissue occurred in combination models of cancellous bone scaffolds. It indicates the biocompatibility and proper structure strength of these scaffolds, and supports the physiological stability of stem cells and the new cells that enter the environment. Microscopic evaluation of the obtained sections proved the production of spherical or elliptical structures, including odontoblasts, predentin, and tubular dentin in the above-mentioned models. However, despite achieving odontoblastic differentiation, it did not show up in the desired cubic shape. Moreover, no microscopic difference was observed among the models combined with PRP, or DPSCs, and sandwich models. It points out the basic role of transferring a suitable scaffold to the appropriate environment that contains the micro-environment and its target cells; adding PRP or DPSCs made it possible.
Further studies are recommended to assess these models over a longer period of time with more sample size, to design the scaffolds with computer-aided design & computer-aided manufacturing (CAD/CAM), to apply nutritional, behavioral and environmental control with regularly rinse the animal's mouth with disinfectant agents to eliminate the intervening factors, and also to make use of new scaffolds with other compositions.
Using all the combination models designed with cancellous bone scaffold (in combination with PRP, DPSCs, and sandwich models) to regenerate dentin-pulp complex in the dog was associated with odontoblastic differentiation and regeneration of pulpal structure and dentin formation.
Acknowledgment
This article was extracted from the thesis of Mrs. Setareh Kazempour DDS, and was conducted under the supervision of Dr. Ali Dehghani Nazhvani. It was supported by Shiraz University of Medical Sciences (Grant #8794127).
Financial support and sponsorship
Nil.
Conflicts of interest
The authors of this manuscript declare that they have no conflicts of interest, real or perceived, financial or nonfinancial in this article.