DRJ Dent Res J Dental Research Journal Dental Research Journal

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

1735-3327 2008-0255 Wolters Kluwer India Pvt. Ltd. India
DRJ-18-104 10.4103/1735-3327.332098 Original Article Frequency of caries in triangular-shaped radiolucencies on periapical radiographs of maxillary deciduous second molars Tabari Mitra Yazdizadeh Mina Abesi Farida Khafri Soraya Dozin Javad V Department of Pediatric Dentistry, Faculty of Dentistry, Babol University of Medical Sciences, Babol, IranDepartment of Pediatric Dentistry, Faculty of Dentistry, Babol University of Medical Sciences, Babol, IranDepartment of Oral and Maxillofacial Radiology, Faculty of Dentistry, Babol University of Medical Sciences, Babol, IranDepartment of Biostatistics and Epidemiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, IranDentist, Private Practice, Babol, Iran Address for correspondence:Mina Yazdizadeh, Department of Pediatric Dentistry, Faculty of Dentistry, Babol University of Medical Sciences, Babol, Iran mn.yazdizadeh@gmail.com Jan–Dec 2021 18 1 104 104 2022021 Copyright: © Dental Research Journal 2021

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Background:

Dentists might face various artifacts (such as triangular-shaped radiolucencies [TSRs]) during the assessment of radiographs and should be able to differentiate them from caries to avoid unnecessary treatments.

Materials

and Methods:

In this cross-sectional study, 109 maxillary second primary molars were evaluated in cooperative children aged 4–9 years, who had distal caries in their maxillary first primary molars. First, TSRs were recorded on periapical radiographs of each maxillary second primary molar's proximal surface. Then, after excavating distal caries in the adjacent teeth “D,” a pedodontist examined the mesial surfaces of teeth “E.” Chi-square test was used to compare the distribution of caries in different variables, and the kappa coefficient was applied to evaluate clinical and radiographic agreements. A P < 0.05 was considered statistically significant.

and Methods:

In this cross-sectional study, 109 maxillary second primary molars were evaluated in cooperative children aged 4–9 years, who had distal caries in their maxillary first primary molars. First, TSRs were recorded on periapical radiographs of each maxillary second primary molar's proximal surface. Then, after excavating distal caries in the adjacent teeth “D,” a pedodontist examined the mesial surfaces of teeth “E.” Chi-square test was used to compare the distribution of caries in different variables, and the kappa coefficient was applied to evaluate clinical and radiographic agreements. A P < 0.05 was considered statistically significant.

Results:

Forty-four cases were found to be carious both clinically and radiographically, and 54 cases were noncarious by both methods, while for 11 cases, the diagnosis was controversial. No statistically significant difference was found between radiographic and clinical caries detection methods in children whose periapical radiographs contained TSRs, and most of the subjects had similar diagnoses. Value of caries detection sensitivity, specificity, positive predictive value, and negative predictive value in TSRs was 88%, 92%, 90%, and 90%, respectively.

Conclusion:

Considering high radiographic sensitivity for caries detection in TSRs, clinicians should be more cautious about them being carious or not, and both radiographic and clinical examinations are necessary. Further, to avoid misinterpretation in radiographs, additional education is necessary for young dentists.

Artifact deciduous tooth dental decay dental radiography
</sec><sec><title>Introduction

Dental caries is a multifactorial disease caused by an interaction between the tooth, microorganisms, and diet. Subsurface mineral loss in the outer enamel surface would result in an early carious lesion.1 Although early diagnosis of incipient carious lesions can prevent destructive episodes, detecting incipient interdental lesions is still challenging, and clinicians tend to overlook them in routine dental examinations.2 Considering the high diagnostic value of radiographic examinations for caries detection and progression control, and also for evaluating existing restorations and periodontal condition, 2–4 posterior bitewing radiographs (plus one panoramic radiograph and/or selective periapical radiographs) are usually prescribed for a complete dental checkup for each new patient.3

The requirements for a proper radiographic assessment are adequate knowledge about tooth anatomy, caries radiographic image, and alertness about possible superimposition effects.4 During the evaluation of radiographic images, dentists might face various artifacts that should be differentiated from dental caries or anomalies to prevent unnecessary treatment or false-positive diagnosis. Cervical burnout and the Mach band effect are good examples of classical radiographic artifacts.5

The morphology of deciduous molars in the proximal surfaces and the concavity of these surfaces might increase the risk of developing caries. Triangular-shaped radiolucencies (TSRs) might be present in the mesial aspects of upper molars on radiographs, due to their anatomic characteristics, such as a rhomboid crown shape, mesial contact point with the adjacent teeth, having a palatal cusp, and thin mesiodistal dimension at the cervical parts of the crown as compared with the coronal parts Figure 1. This phenomenon's prevalence is 60.3% in maxillary deciduous second molars and 24.8% in maxillary permanent first molars.4,6,7

Example of triangular-shaped radiolucency on a maxillary deciduous second molar posteroanterior radiograph.

Figure 1

Although TSRs resemble carious lesions, they still can be differentiated from them because, unlike carious lesions, TSRs have well-outlined borders, do not follow the spreading pattern of dentinal caries toward the pulp, and do not necessarily accompany enamel caries. Considering this resemblance and the sparse knowledge about TSRs, there is an increased risk for cavity preparation in healthy molars because of false-positive diagnoses.4,8

This study aimed to determine the frequency of caries in TSRs on periapical radiographs of maxillary deciduous second molars.

Materials and Methods

In this cross-sectional study, after obtaining informed consent, 109 maxillary deciduous second molars were evaluated in 94 pediatric patients aged 4–9 years, referring to the Department of Pediatric Dentistry, School of Dentistry, Babol University of Medical Sciences (2016–2017). Of the study participants, 50.5% were male and 49.5% were female, with a meanage of 6.25 ± 1.59 and 6.2 ± 1.14 years, respectively.

This study's inclusion criteria were cooperative children with caries in the marginal ridge and the distal surface of the upper tooth D or candidates of tooth D extraction; this would make the mesial surface of the adjacent tooth E accessible for visual examination during the preparation of tooth D. Moreover, before starting any treatment procedure on tooth D, TSRs should have been observed in the mesial aspects of tooth E on radiographs. Patients with clinical caries on mesial surfaces of teeth E or disqualified radiographs were excluded.

All the periapical radiographs were obtained under a radiologist's supervision using Mindray Soredex (Finland) and a pediatric film holder, XCP (Dentsply, Rinn Co, USA), with exposure conditions of 60 kVp and 7 mA and variable exposure time considering each patient's body mass. All the radiographs were developed by an Air-Techniques Peri-Promaintenance developer (Germany). When the presence of TSRs in the proximal surfaces of maxillary teeth E was confirmed, teeth D were either extracted or underwent distal cavity preparation. Then, the mesial surfaces of teeth E were examined by a pediatric dentist using an explorer and air syringe under the dental unit light, and then, the data were recorded. Sound enamel surfaces with brown spots or white spots were also considered noncarious.

The data were analyzed with SPSS statistics software (version 20; SPSS Inc., IBM, Armonk, NY, USA). Chi-square test was used to compare the frequency of caries among different study variables. The kappa coefficient was used to assess the agreement between radiographic and clinical measures. The level of significance was set at P < 0.05.

Results

In this cross-sectional study, 109 maxillary deciduous second molars were evaluated in 94 pediatric patients.

Radiographic examinations showed that 45% of the subjects had caries, and 55% were caries-free, while according to clinical examinations, 45.9% of the subjects had caries, and 54.1% were caries-free. Statistical comparison between radiographic and clinical examinations revealed clinical and radiographic diagnostic agreement in 98 subjects, while there was diagnostic controversy for 11 cases.

There was no statistically significant difference between clinical and radiographic caries detection, and the two methods exhibited agreement in 80% of cases (P < 0.001) Table 1.{Table 1}

The radiographic diagnostic sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for TSRs were as follows:

Sensitivity: 88% (79%–97%)

Specificity: 92% (84%–99%)

PPV: 90% (81%–98%)

NPV: 90% (82%–98%).

Caries conditions of the examined teeth detected radiographically and clinically are presented separately in Table 2 and Table 3, considering the affected jaw side and the subjects' age and gender. No statistically significant difference was found between the maxilla's right and left sides on TSR, including radiographs, whether clinically or radiographically (P = 0.47 and P = 0.81, respectively). The participants were divided into two age groups of ≥6 and <6 years. No statistically significant difference was found between different age groups for tooth decay detection clinically or radiographically (P = 0.72 and P = 0.79, respectively). Further, no statistically significant difference was found between female and male participants, regarding caries experience on the TSR, including radiographs, whether clinically or radiographically (P = 0.49 and P = 0.91, respectively) Table 2 and Table 3.{Table 2}{Table 3}

Discussion

In this study, caries prevalence was evaluated on TSRs including radiographs. TSRs might be present in the mesial aspects of upper molars on radiographs due to their anatomic characteristics.

Few studies have focused on TSRs so far. Khayam et al. conducted a study on the relative prevalence of TSRs on bitewing radiographs of the first and second permanent molars, reporting that TSRs were observed only on the mesial surfaces of maxillary teeth, and no evidence of TSRs was found on the distal surfaces of maxillary teeth or in any part of mandibular teeth. Another study by Kuhnisch et al. on the prevalence of TSRs on bitewing radiographs revealed that TSRs most frequently were present on deciduous maxillary second molars, deciduous maxillary first molars, and permanent maxillary first molars, respectively. However, none of the lower molars, whether primary or permanent, displayed such a phenomenon. Since lower molars do not have a rhomboid crown shape (their crown is usually rectangular) or a large lingual or Carabelli cusp-like maxillary molars, we do not expect to find TSRs in their radiographs.4,5

Our results showed no significant difference in tooth decay detection clinically or radiographically, regarding the patient's gender. Previous studies have shown higher caries prevalence in females in different age groups (because of several factors such as hormones, the difference in oral hygiene, cariogenic microorganisms activity, and variable age for tooth eruption), which is not inconsistent with our findings, since we conducted a descriptive study, and one of our inclusion criteria was the presence of TSRs on radiographs.9,10

According to our data, there was no significant difference between clinical and radiographic examination methods on TSRs containing radiographs. Movahedian et al. conducted a similar study on TSRs, reporting that in 79% of cases, TSRs were misdiagnosed as sound tooth surfaces or Mach band effect while only 1% of TSRs were diagnosed correctly. Although such wrong diagnoses highlight examiners' inadequate knowledge about TSRs, they would not lead to unnecessary treatments. They also reported 20% of false-positive diagnoses. Considering the 20% false-positive results in the mentioned study and 11 controversial cases (20%) in the present study, more training courses are required in this area for dental practitioners to avoid possible unnecessary and invasive treatments in the future.11

Several studies have evaluated interdental caries and common artifacts, including cervical burnout or Mach band effect. However, they have mostly focused on radiographic efficacy in caries or artifact detection, of which a study by Mialhe et al. is a good example. They reported that clinical examinations accompanied by bitewing radiographic interpretations might dramatically reduce false-positive diagnoses. Furthermore, da Silva et al. and de Araujo et al. reported that using radiographic examinations alone is not reliable for detecting incipient proximal caries, and radiographic evidence should be accompanied by clinical examinations. Foster Page et al. emphasized the necessity of considering bitewing radiographs in the diagnostic route to improve the management of carious lesions in young children. These findings are consistent with the present study, and since radiographic sensitivity for caries detection and the PPV rate were both high, dental practitioners should decide about treating these cases cautiously.12,13,14,15

Weerhejim et al. emphasized the importance of accompanying radiographic and clinical examinations. In age groups of 14, 17, and 20 years, 26%, 37.5%, and 50% of clinically intact tooth surfaces, respectively, were diagnosed as false positive by radiographic interpretations. A study by Espelid et al. revealed that 15.7% of intact tooth surfaces with caries-like radiolucencies were diagnosed as false positive. Consistent with the above studies, the last two studies also emphasize the necessity of radiographic and clinical examinations.16,17

Ahrari et al. and Todorova et al. evaluated the validity of laser fluorescence (DIAGNOdent pen) and near-infrared reflection for detecting early proximal cavities. Their findings showed that combined diagnostic approaches comprising clinical and radiographic examinations are still needed.18,19

Conclusion

Since radiographic sensitivity of caries detection for TSRs was high, we recommend that clinicians be more cautious about their carious or noncarious nature in cases of TSRs, and radiographic interpretations should be accompanied by clinical examinations. Further, improving clinicians' knowledge about TSRs might help prevent radiographic misinterpretations.

Financial support and sponsorship

Nil.

Conflicts of interest

The authors of this manuscript declare that they have no conflicts of interest, real or perceived, financial or nonfinancial in this article.

Stuart C White P Michael J Oral Radiology: Principles and Interpretation.7th edIndia: Elsevier; Oral Radiology: Principles and Interpretation 7th ed India: Elsevier; 2014 Brocklebank L Dental Radiology, Understanding the X-Ray ImageEngland: Oxford Medical Publications; Dental Radiology, Understanding the X-Ray Image England: Oxford Medical Publications; 1997 Lino JR Ramos-Jorge J Coelho VS Ramos-Jorge ML Moyses MR Ribeiro JC Association and comparison between visual inspection and bite-wing radiography for the detection of recurrent dental caries under restorationsIDJ 81 178 Kuhnisch J Pasler F Bucher K Hickel R Heinrich-Weltzein R Frequency of non-carious triangular-shaped radiolucencies on bite-wing radiographsDentomaxillofac Radiol 7 23 Khayam E Daneshkazemi A Hozhabri H Moeini M Namiranian N Ratki SK Evaluation of the relative frequency of non-carious triangular-shaped radiolucencies in the first and second permanent molars bite-wing radiographyIndian J Dent 4 141 Cortes A Martignon S Qvist V Ekstrand KR Approximal morphology as predictor of approximal caries in primary molar teethClinical oral investigations 951 9 Turp J Anatomy and morphology of human teeth.Dental Anthropology: Fundamentals, Limits, and ProspectsAustria: springer; Anatomy and morphology of human teeth Dental Anthropology: Fundamentals, Limits, and Prospects Austria: springer; 1998 71-94 Firestone A Lussi A Weems R Heaven T The effect of experience and training on the diagnosis of approximal coronal caries from bite-wing radiographs.A Swiss-American comparisonSchweiz Monatsschr Zahnmed 719 23 Lukacs JR Sex differences in dental caries experience: Clinical evidence, complex etiologyClin Oral Investig 649 56 Ferraro M Vieira AR Explaining gender differences in caries: A multifactorial approach to a multifactorial diseaseInt J Dent 2010 Movahedian N Adibi S Tavakoli HS Baseri H How does triangular-shaped radiolucency affect caries diagnosis?Oral Radiol 7 32 Mialhe FL Pereira AC Meneghim Mde C Ambrosano GM Pardi V The relative diagnostic yields of clinical, FOTI and radiographic examinations for the detection of approximal caries in youngstersIndian J Dent Res 136 40 da Silva Neto JM dos Santos RL Sampaio MC Sampaio FC Passos IA Radiographic diagnosis of incipient proximal caries: An ex-vivo studyBraz Dent J 97 102 de Araujo FB de Araujo DR dos Santos CK de Souza MA Diagnosis of approximal caries in primary teeth: Radiographic versus clinical examination using tooth separationAm J Dent 54 6 Foster Page LA Boyd D Fuge K Stevenson A Goad K Sim D The effect of bite-wing radiography on estimates of dental caries experience among children differs according to their disease experienceBMC Oral Health 137 Weerheijm KL Groen HJ Bast AJ Kieft JA Eijkman MA van Amerongen WE Clinically undetected occlusal dentine caries: A radiographic comparisonCaries Res 305 9 Espelid I Tveit AB Clinical and radiographic assessment of approximal carious lesionsActa Odontol Scand 31 7 Ahrari F Akbari M Mohammadi M Fallahrastegar A Najafi MN The validity of laser fluorescence (LF) and near-infrared reflection (NIRR) in detecting early proximal cavities.Clin Oral Investig 1 8 Todorova V Filipov I Petrova R In vitro comparison of several methods for initial proximal caries detectionFolia Med (Plovdiv) 358 64

Refbacks

  • There are currently no refbacks.