This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
The effect of different intracanal medicaments on root fracture resistance has not been thoroughly investigated in the short and long term. To assess the effect of calcium hydroxide (CH), CH combined with Chlorhexidine (CHX), double antibiotic paste (DAP), and simvastatin as intracanal medicaments on the fracture resistance of the human root. One hundred and twenty single-rooted mandibular premolars which were extracted for periodontal reasons were collected for this in vitro study.
This was an in vitro study. All teeth were decoronated. Root canals were prepared by the Pro taper system, and %2.5 NaOCl was used for irrigation. The smear layer was removed using %5.25 NaOCl and 17% ethylenediaminetetraacetic acid each for 3 min. The samples were randomly divided into five groups based on the medicament: (1) CH (2) CH + CHX (3) Simvastatin (4) DAP (5) Control group. All specimens in each group were incubated for 1 week (Subgroup A) and 1 month (Subgroup B). Then, medicaments were removed and filled with gutta-percha and AH26 sealer. All samples were tested for fracture resistance. The data were statistically evaluated with the SPSS software 17. ANOVA and Mann–Whitney U and Wilcoxon tests were used for the analysis of the data. P = 0.05 was considered statistically significant.
Although CH and CH + CHX increased the fracture resistance in a 1-week period, there was no significant difference between the groups after 1 month.
Under the limitations of this study, CH and CH + CHX, DAP and simvastatin do not have a negative effect on root fracture resistance when used as intracanal medicaments for <1 month.
Intracanal medicaments have been used for disinfection purposes between the sessions of endodontic procedures. The time it takes for the medicament to be effective varies depending on the procedure and potency of the material.
Root fracture is associated with several known factors that weaken tooth structure, including decays, access cavity and canal preparation, and presumably, intracanal medicaments.
Calcium hydroxide (CH) is a widely accepted well studied endodontic material with high pH and wide antimicrobial activity that is being used as intracanal dressing.
Chlorhexidine (CHX) is an effective antimicrobial agent, notably, against CH resistant microflora.
Double antibiotic paste (DAP) is a mixture of metronidazole and ciprofloxacin and has been used in endodontic regeneration with favorable results.
Simvastatin is a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor used basically for cardiovascular disease with documented safety and low price.
Root fracture is one of the most undesirable complications after endodontic treatment that seriously affects the prognosis.
This was an in vitro study. After receiving local ethics committee approval, 120 single-rooted mandibular premolars, extracted for periodontal and orthodontic reasons were obtained and stored in chloramine T 0.5% until the study time. All specimens were examined with magnifying loop and plain radiography for the exclusion of any cracked, calcified, previously treated or undeveloped teeth. After scaling and root planning (Cavitron, Dentisply, Ltd, Weybridge, UK), all teeth were decoronated below the CEJ with diamond disk (Sp 1600 Microtome, Leica, Na Block, Germany) under water coolant to leave 13 mm of length. Working length was determined with K-file #15 (Dentisply Mailefer, Balbigue, Switzerland) instrumentation was done using the crown-down technique with rotary system (Dentisply Mailefer, Balbigue, Switzerland) up to main apical file F3 and #35. 2.5% Sodium hypochlorite (MORVABON, Tehran, Iran) was used for irrigation. Finally, 5.25% sodium hypochlorite and 17% ethylenediaminetetraacetic acid (MORVABON, Tehran, Iran) were applied for smear layer removal, and canals were rinsed and dried with paper points.
All roots were randomly assigned to five study groups (24 roots in each group); Group 1: CH (MORVABON, Tehran, Iran), Group 2: Combined use of CH and CHX 2% (MORVABON, Tehran, Iran), Group 3: Simvastatin (Pursina, Tehran, Iran); simvastatin 1% gel was prepared according to method used by Dianat et al.,
All the root canals in the experimental and control groups were sealed with Cavite dressing (Cavisol, Golchay, Tehran, Iran). All specimens in each group were randomly assigned into two equal subgroups depending on the incubation time. Subgroup A specimens were incubated for 1 week and Subgroup B for 1 month in 37° and 100% moist in incubator. At the end of the incubation period, canals were rinsed with 5.25% sodium hypochlorite and normal saline and were obturated with gutta-percha and AH26 sealer (Dentisply, Dentrey, kostanz, Germany) with lateral compaction technique and were again incubated for 24 h with previous settings. In the control group, all specimens were obturated with the same technique after canal preparation.
To simulate the PDL and create a 0.2-mm gap external surface of each root was covered with a thin layer of melted wax and dried. Calipers (Yates-Motloid, Chicago, Illinois, USA) were used to assess the thickness of the wax layer in two different root levels. Then roots were embedded in self-curing acrylic cylinders (AcroPars, Tehran, Iran). After polymerization was completed, roots were removed and the wax layer was removed with warm water. Simulated acrylic sockets were filled with poly vinyl siloxane (Impregum Soft, 3M ESPE, Seefeld, Germany) and roots were reinserted in sockets immediately. Finally, samples were tested for fracture resistance with the universal testing machine (Hounsfield Test Equipment, Model: H5K-S, Surrey, England).
The statistical analysis of the data was performed using the SPSS software version 17.0 (SPSS Inc., Chicago, IL, USA) where P = 0.05 was considered statistically significant. The Kolmogorov–Smirnov test was used to assess the normality of the data.
Descriptive findings are presented in
Based on the values measured after 1 month, the highest fracture resistance was related to Simvastatin group with an average of 657.78 ± 449.01 and the least amount was recorded in DAP group (308.08 ± 238.52). Normality of data and homogeneity of variances was confirmed in the 1-month interval. Thus, according to the one-way ANOVA test results, fracture resistance amount was not significantly different between the study groups (P = 0.13).
According to Wilcoxon test results, there was no statistically significant difference between the fracture resistance of each study group in 1 week as compared to fracture resistance in 1 month
This study was conducted to investigate the effect of different intracanal medicaments on the fracture resistance of radicular dentin. According to our findings, CH and CH combined with CHX, DAP, and simvastatin do not have a significant negative effect on root fracture resistance when used as intracanal medicament for <1 month.
Although CH has been widely used for endodontic treatments, its antimicrobial inefficiency in persistent endodontic infections is considerable.
An unexpected finding of our study was the significant increase in fracture resistance of samples treated with CH (with or without CHX) after 1 week of incubation. This observed effect might be associated with denaturating effect of CH which might result in better penetration of obturation materials into radicular dentin and subsequent improvement in fracture resistance. However, the lack of this observation on the samples incubated for 1 month might reflect the negative influence of progressive denaturation on fracture resistance. Further specifically designed studies with larger sample sizes are required to evaluate these findings.
Regarding the current study's findings, it can be suggested that addition of CHX to CH is mechanically harmless for dentinal structure in less than a month and might be rational for a better antimicrobial coverage. This finding is consistent with Prabhakar et al. study results.
Simvastatin is known to have antimicrobial activity against bacteria and reduces the formation of Staphylococcus aureus biofilms.
DAP and simvastatin had no significant effect on fracture resistance. To our knowledge, this is the first study to assess the biomechanical effects of these materials on radicular dentin. Anti-inflammatory effects of simvastatin through the reduction of interleukin 6 and 8 have been established. Therefore, the local application of simvastatin as an intracanal medicament or as a combination with previously studied materials might lead to improved results without jeopardizing fracture resistance of radicular dentin.
One of the advantages of this study compared to previous similar studies is that human premolars were used instead of bovine specimens.
In this study, second follow-up was carried out after 1 month because the duration of application of CH in most of the endodontic treatments is in this range.
According to Olcay et al.,
In conclusion, under the limitations of this study, CH, CH + CHX, DAP, and simvastatin do not have a negative effect on root fracture resistance at 1-month interval when used as intracanal medicaments. Thus, the studied medicaments can be used in regenerative treatments without concerns about negative mechanical effects on root resistance and future studies can focus on other aspects of them.
Financial support and sponsorship
Nil.
Conflicts of interest
The authors of this manuscript declare that they have no conflicts of interest, real or perceived, financial or non-financial in this article.