?
DRJDent Res JDental Research JournalDental Research Journal
This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
Background:
Small chipping or fracture of ceramic restorations may be repaired by composite resin instead of replacing the restoration. This method is faster and cheaper compared to restoration replacement. Several strategies have been suggested to obtain a high repair shear bond strength (SBS). This study aimed to assess the efficacy of some new ceramic surface treatments (laser and universal adhesive) to enhance the repair bond strength of composite resin to ceramic compared to the conventional method.
Materials and Methods:
This in vitro study evaluated 80 IPS Empress Esthetic ceramic plates in eight groups (n = 10). The ceramic surface was polished with 320-grit silicon carbide paper under running water, rinsed with water spray for 10 s and dried. The samples were then divided into two subgroups for mechanical surface preparation with hydrofluoric (HF) acid and Er: YAG laser (2 W, 200 m J, 10 Hz, 10 s). Each group was divided into two subgroups for use/no use of silane. The conventional or universal adhesive was then applied on the samples in each subgroup. Composite cylinders were bonded to the ceramic surface using plastic tubes. The samples were stored in distilled water at 37°C for 24 h and subjected to an SBS test. Data were analyzed using one-way ANOVA (P < 0.05).
Results:
The interaction effect of variables on SBS was significant. Maximum SBS was noted in HF acid + silane + conventional adhesive group (mean: 12.0481 MPa). Minimum SBS was noted in the laser + conventional adhesive group (mean: 2.5766 MPa). Surface treatment with HF acid yielded significantly higher SBS than laser (P < 0.001). The interaction effect of conventional/universal adhesive and use/no use of silane on SBS was statistically significant.
Conclusion:
The repair SBS was higher in groups treated with HF acid compared to laser. Ceramic surface treatment with HF plus silane plus conventional adhesive yielded a higher SBS as well as HF plus Universal adhesive. Thus, the application of silane as a separate step can be omitted in the repair of ceramic restorations with universal adhesives.
Bond strengthceramiclaserresin compositeIntroduction
At present, glass-ceramic restorations are highly popular due to their excellent esthetic appearance and long-term durability.
1Nonetheless, defects, chipping, and fracture of these restorations are common. Replacement of the restoration may be required in some cases. Although restoration replacement leads to more favorable clinical and esthetic results, it is not always the best choice because it may cause pulpal damage, is costly and wastes time.
2,
3Small chipping or fracture of ceramic restorations may be repaired by composite resin instead of replacing the restoration. This method is more conservative and cheaper than restoration replacement and can be performed within single session. The remaining part of the restoration remains intact and the tooth does not need any further preparation. Thus, pulpal irritation is prevented in restoration repair. However, achieving a durable bond between the composite resin and ceramic is challenging.
4,
5,
6,
7,
8,
9A combination of techniques is often employed to prepare the glass-ceramic surface aiming to enhance the bond of composite resin to ceramic by micromechanical interlocking and chemical bonds. The suggested techniques for this purpose include sandblasting, tooth preparation, surface roughening by bur, silica coating, etching with hydrofluoric (HF) acid, laser irradiation, and application of silane and adhesives.
5The commonly used technique for the repair of glass-ceramics involves HF acid etching and the application of silane and adhesive. Application of HF acid following surface roughening enables micromechanical retention. Furthermore, it removes the glassy matrix and reveals the crystalline structure of ceramic.
10,
11Application of silane as primer enhances the adhesion of the resin to ceramic.
8,
9Low-viscosity silane results in surface wetting and facilitates microscopic penetration of resin into the porous structure of ceramic and enables adhesion by creating covalent bonds.
4Adhesives, mainly conventional adhesives, are applied following the application of silane. Recently, a new generation of adhesives, namely universal adhesives were introduced on the market, which can be used in self-etch, total-etch, and selective-etch modes. Universal adhesives can bond to the tooth structure and indirect restoration surfaces such as ceramic, resin, and metal.
8
Kalavacharla et al. reported that silane present in the composition of universal adhesives has no significant effect on bond strength and a separate step of silane application cannot be omitted.
12Laser irradiation is among the novel surface treatment techniques. Furthermore, the application of universal adhesives is a more recent technique compared to other methods and evidence is inconclusive regarding their efficacy in the process of ceramic repair. On the other hand, silane is present in the composition of some universal adhesives such as Single Bond Universal (3M), which questions the need for a separate silane application step. This study aimed to assess the effect of mechanical and chemical surface treatments on repair bond strength of composite to ceramic. Furthermore, the efficacy of these novel techniques was compared with that of conventional surface treatment (HF acid etching and application of conventional adhesive). The effect of different surface treatments was evaluated by measuring the repair bond strength of composite to ceramic after 24 h of immersion in distilled water. Moreover, this study aimed to assess the effect of silane application, along with universal adhesive. The null hypotheses were (a) the efficacy of different mechanical surface treatments (laser and HF acid etching) would not be significantly different, (b) application of silane would have no significant effect on repair bond strength, and (c) the effects of conventional and universal adhesives would not be significantly different on repair bond strength.
Materials And Methods
It is an experimental study with the following in vitro steps
Fabrication of ceramic blocks
Eighty ceramic blocks (Lucite-reinforced glass-ceramic; IPS Empress; IvoclarVivadent, Liechtenstein) were fabricated in a laboratory. In brief, wax molds were fabricated measuring 6 mm × 6 mm with 5-mm thickness and measured with a caliper. After spruing, the molds were poured with dental stone. Ceramic ingots were heated in a furnace at 870°C for 40 min. After removal and cooling, they were sandblasted with aluminum oxide particles, measured again, and glazed. All samples were mounted in acrylic resin such that one surface of the ceramic block remained exposed with 1-mm thickness. The surface of all samples was polished with 320-grit silicon carbide abrasive paper under running water with equal hand pressure for ten times. They were then rinsed with water for 10 s and dried with air spray.
Ceramic surface treatment
The samples were randomly divided into eight groups of 10 for the assessment of three independent variables
Figure 1.
Flowchart of Materials and methods
Figure 1
Group 1: Laser irradiation (Er: YAG laser (Pluser; Dr smile; Italy) + universal adhesive (Single Bond Universal: Scotchbond Universal Adhesive; 3M ESPE; USA)
Group 2: Laser irradiation + conventional adhesive (AdperScotchbond Multi-Purpose adhesive: 3M ESPE, St. Paul, MN, USA)
Group 3: Laser irradiation + silane (Silane; Ultradent products; USA) + universal adhesive
Group 4: Laser irradiation + silane + conventional adhesive
Group 5: HF acid etching (IPS Ceramic Etching Gel; Ultradent products; USA) + universal adhesive
Group 6: HF acid etching + conventional adhesive
Group 7: HF acid etching + silane + universal adhesive
Group 8: HF acid etching + silane + conventional adhesive.
The surface of samples in the four groups (n = 40) was subjected to Er: YAG laser irradiation with 2 W power in pulse mode with 200 mJ energy and 10 Hz frequency for 10 s.
13Laser was irradiated in forward and backward motion. The 600 μm tip of the laser handpiece had 1 mm distance from the surface and laser was irradiated under water spray perpendicular to the ceramic surface. The surfaces of samples in the remaining four groups (n = 40) were etched with 90% buffered HF acid for 60 seconds,
14rinsed with water for 10 s and dried. Silane was applied on the surface of half of the samples in HF and laser subgroups. Silane coupling agent was applied on the surface of samples by a microbrush for 60 s and dried. Subsequently, one of the two adhesives was applied on the ceramic surface. In the use of conventional adhesive, two layers of AdperScotchbond Multi-Purpose adhesive were applied and air-thinned for 5 s followed by 10 s of curing (1000 mW/cm
2, Valo, Uitradent, USA). In the application of Single Bond Universal, which contains silane monomer, two layers of the adhesive were applied on the surface, air-thinned for 5 s and cured for 10 s. Next, Z250 composite resin (Z250 composite resin 3M ESPE, USA) was applied into transparent plastic tubes with an internal diameter of 3 mm and 3 mm height, which were placed vertically at the center of the ceramic surfaces and light-cured for 40 s. The plastic tube was then cut with a scalpel (with no pressure to composite) and separated. The composite sample was cured again for 20 s. The entire procedure was performed according to the manufacturer's instructions. Next, all bonded samples were immersed in distilled water at 37°C for 24 h. They were then transferred to a universal testing machine (ZwichRoell, Ulm, Germany) and mounted such that the blade applied load at the bonding interface perpendicular to the longitudinal axis of the samples at a crosshead speed of 1 mm/minute until fracture. The load at fracture was recorded. The shear bond strength (SBS) data were converted to megapascals and analyzed using one-way ANOVA. The study was approved in the ethics committee of Tehran University of Medical Sciences.
Results
One-way ANOVA revealed that the interaction effect of study variables on SBS was statistically significant.
Table 1shows the SBS in different groups.{Table 1}
Comparison of groups revealed that application of HF acid, compared to laser irradiation (irrespective of the type of adhesive and use/no use of silane), significantly increased the SBS (P < 0.001). The highest SBS was noted in “HF acid + universal adhesive” and “HF acid + silane + conventional adhesive” groups (P < 0.5). In application of HF acid and universal adhesive, the group without silane yielded higher SBS (P = 0.003). The lowest SBS was noted in “laser + universal adhesive” and “laser + conventional adhesive” groups
Figure 2.
Shear bond strength (MPa) of study groups
Figure 2
Discussion
This study aimed to assess the effect of different ceramic surface treatments on repair bond strength of composite to ceramic. Comparison of HF acid and laser for surface treatment of ceramic revealed that application of HF acid yielded a higher bond strength between the composite and ceramic. Some researchers have reported that HF acid etching is the most effective method for ceramic surface treatment because it increases surface roughness and micromechanical retention.
13,
14In fact, HF acid creates the highest irregularities on the surface. It reinforces the siloxane bonds and creates the best microstructure for micromechanical bonding (which is the main reason for the superiority of HF acid to laser).
15,
16These results were in line with those of Özdemir et al.
17The reduction in repair bond strength of ceramics treated with laser, compared to those treated with HF acid, can be attributed to the unequal and lower microscopic depth of porosities created and excessive destruction of the matrix phase and crystals or layers damaged by high temperature.
7Ebrahimi Chaharom et al.
18showed that the bond strength was not significantly different in HF and laser groups, which was different from our findings. It might be related to the type of composite they had used which were silorane-based composite.
Comparison of use and no use of silane in all groups, except for the universal adhesive group (which contains silane in its composition), revealed superior SBS in silane groups. Thus, it may be stated that the highest SBS is achieved when silane is applied. Similarly, Ozden et al., in 1994 indicated that the highest SBS was noted after using silane in combination with a mechanical preparation method.
19Goracci et al.,
20Albaladejo et al.,
21and Perdigão et al.
22reported that silane application is an effective method to increase the bond strength. This can be due to the ability of silane in increasing surface wetting and creating covalent bonds. Silane enhances the adhesion in the presence of epoxy resin polymers; it increases both the chemical bonds between the inorganic substrate and polymer and the surface wettability.
23The surface modifiers such as silane have excellent properties for the bond of organic and inorganic materials and organic-inorganic hybrid components which contain silicon-carbon bonds. In resin-based composites, silane can change the filler surface as a coupling agent for bonding of composite to composite and provide a strong chemical bond between them.
24Kim et al.,
8also concluded that separate application of silane improves the repair bond strength. Kupiec et al.
25pointed to the key role of silane in the process of repair and stated that the highest bond strength was noted in air abrasion plus HF acid group. In this group, silane was applied before the use of adhesive. Sattabanasuk et al.
4demonstrated that silane significantly increased the bond strength in un-etched samples, which was in agreement with our results.
In contrast to our study, Cho et al.,
26and Celik et al.
27stated that the application of silane had no significant effect on bond strength. The reason can be the difference in the concentration and type of materials used in different studies. Thus, it may be concluded that in most studies, irrespective of the concentration of materials and other factors, the highest SBS is achieved when compounds containing silane are used. This finding highlights the ability of silane to increase surface wetting and create covalent bonds between the OH-groups of inorganic substrates such as glass. In general, silane enhances the adhesion in the presence of epoxy resin polymers. It enhances the chemical bond between inorganic substrates and polymer and increases the surface wettability.
23The chemical bond of silane depends on the presence of silica in the ceramic surface, which is rare in the composition of aluminum ceramics and complicates achieving a chemical bond to them.
28
The current findings revealed that in the application of HF acid and silane, the SBS results were superior in the group where the conventional adhesive was used because universal adhesive can decrease water evaporation or surface wetting and prevent the bonding of silane to glass ceramic.
12Furthermore, in the application of HF acid without silane in our study, universal adhesive yielded higher SBS values. Sattabanasuk et al. evaluated the efficacy of universal and conventional adhesives for the repair process and showed that the application of universal adhesive containing silane could not yield a higher SBS, especially when compared to separate applications of silane.
4Both the aforementioned studies confirmed the optimal efficacy of silane in universal adhesives. However, Yoshihara et al. showed that the silane present in the composition of universal adhesives was not much stable.
6
The current results showed that the efficacy of conventional and universal adhesives was not significantly different and “HF acid + universal adhesive” and “HF acid + silane + conventional adhesive” yielded the best results with regard to SBS. On the other hand, using universal adhesive simplify the repairing procedure (by omitting the silanization procedure of ceramic). Obtaining a strong bond by the use of universal adhesives is related to their inherent properties since they contain methacryloyloxy decyldihydrogen phosphate (MDP) monomer in their composition. They form chemical bonds due to the presence of MDP monomer in their composition,
29which justifies their optimal etching and bonding ability. The MDP monomer is a phosphate monomer, which enhances the bond between ceramic and composite. The MDP monomer forms highly resistant bonds to metal oxides and silane, and can also bond to SiO2-based ceramics.
2,
5,
30,
31In fact, MDP is a bifunctional adhesive monomer, which bonds to oxides with its hydrophilic phosphate end and bonds to resin monomers with its hydrophobic methacrylate end.
8,
32
Considering the current findings, favorable SBS between composite resin and glass ceramics requires micromechanical (HF) and chemical retention (silane). So, for repairing glass-ceramics by conventional adhesives we need HF and silane ceramic treatment but by universal adhesives, just HF treatment.
Conclusion
Under the limitation of this study we can conclude that the repair SBS was higher in groups treated with HF acid compared to laser. Ceramic surface treatment with HF plus silane plus conventional adhesive yielded a higher SBS as well as HF plus Universal adhesive. Thus, the application of silane as a separate step can be omitted in repair of ceramic restorations with universal adhesives.
Acknowledgments
The authors thank Tehran University of Medical Sciences, International Campus for financial support.
Financial support and sponsorship
Nil.
Conflicts of interest
The authors of this manuscript declare that they have no conflicts of interest, real or perceived, financial or nonfinancial in this article.
RekowEDSilvaNRCoelhoPGZhangYGuessPThompsonVPPerformance of dental ceramics: Challenges for improvements93752GhavamMSoleimanpourMHashemikamangarSSEbrahimiHKharazifardMJMicro shear bond strength of self-adhesive composite to ceramic after mechanical, chemical and laser surface treatments297304HalilMHZainolIZAdamKBRosmanWNAhmadSZComparison of bond strength between selected orthodontic adhesives versus anterior restorative materials12749SattabanasukVCharnchairerkPPunsukumtanaLBurrowMFEffects of mechanical and chemical surface treatments on the resin-glass ceramic adhesion properties.J Investig Clin Dent 2017;8: e12220Effects of mechanical and chemical surface treatments on the resin-glass ceramic adhesion properties J Investig Clin Dent 2017;8: e12220SeabraBArantes-OliveiraSPortugalJInfluence of multimode universal adhesives and zirconia primer application techniques on zirconia repair1827YoshiharaKNagaokaNSonodaAMaruoYMakitaYOkiharaTEffectiveness and stability of silane coupling agent incorporated in 'universal' adhesives121825GökçeBOzpinarBDündarMCömlekogluESenBHGüngörMABond strengths of all-ceramics: Acid vs.laser etching1738KimRJWooJSLeeIBYiYAHwangJYSeoDGPerformance of universal adhesives on bonding to leucite-reinforced ceramic11KiomarsiNEspahbodiMChiniforushNKarazifardMJKamangarSSIn vitro evaluation of repair bond strength of composite: Effect of surface treatments with bur and laser and application of universal adhesive17380ChenJHMatsumuraHAtsutaMEffect of different etching periods on the bond strength of a composite resin to a machinable porcelain538ChenJHMatsumuraHAtsutaMEffect of etchant, etching period, and silane priming on bond strength to porcelain of composite resin2507KalavacharlaVKLawsonNCRampLCBurgessJOInfluence of etching protocol and silane treatment with a universal adhesive on lithium disilicate bond strength3728AramiSHasani TabatabaeiMNamdarFSafaviNChiniforushNShear bond strength of the repair composite resin to zirconia ceramic by different surface treatment1715VeríssimoAHMouraDMTribstJPAraújoAMLeiteFPSouzaROEffect of hydrofluoric acid concentration and etching time on resin-bond strength to different glass ceramicse041RouletJFSöderholmKJLongmateJEffects of treatment and storage conditions on ceramic/composite bond strength3817StangelINathansonDHsuCSShear strength of the composite bond to etched porcelain14605ÖzdemirHAladağLİEffect of different surface treatments on bond strength of different resin cements to lithium disilicate glass ceramic: An in vitro study8205Ebrahimi ChaharomMEPournaghi AzarFMohammadiNNasiriREffect of surface preparation with Nd: YAG and Er, Cr: YSGG lasers on the repair bond strength of lithium disilicate glass ceramic to a silorane-based composite resin127OzdenANAkaltanFCanGEffect of surface treatments of porcelain on the shear bond strength of applied dual-cured cement858GoracciCRaffaelliOMonticelliFBalleriBBertelliEFerrariMThe adhesion between prefabricated FRC posts and composite resin cores: Microtensile bond strength with and without post-silanization43744AlbaladejoAOsorioRAguileraFSToledanoMEffect of cyclic loading on bonding of fiber posts to root canal dentin2649PerdigãoJGomesGLeeIKThe effect of silane on the bond strengths of fiber posts7528MonticelliFOsorioRSadekFTRadovicIToledanoMFerrariMSurface treatments for improving bond strength to prefabricated fiber posts: A literature review34655D'ArcangeloCVaniniLEffect of three surface treatments on the adhesive properties of indirect composite restorations31926KupiecKAWuertzKMBarkmeierWWWilwerdingTMEvaluation of porcelain surface treatments and agents for composite-to-porcelain repair11924ChoSDRajitrangsonPMatisBAPlattJAEffect of Er, Cr: YSGG laser, air abrasion, and silane application on repaired shear bond strength of compositesE19CelikEUErgücüZTürkünLSErcanUKTensile bond strength of an aged resin composite repaired with different protocols35966SoaresCJSoaresPVPereiraJCFonsecaRBSurface treatment protocols in the cementation process of ceramic and laboratory-processed composite restorations: A literature review22435TeshimaIDegradation of 10-methacryloyloxydecyl dihydrogen phosphate12816ShahverdiSCanaySSahinEBilgeAEffects of different surface treatment methods on the bond strength of composite resin to porcelain699705CarlosEPGeraldoAPSimoneKAlineBGElimarioVRSergioCDInfluence of the surface treatment on shear bond strength of coating ceramics of zirconia1937KermanshahHOmraniLRHematiOPedramPAhmadiEModified microtensile bond strength of glass ionomer to composite resin using universal adhesive in self-etch and total-etch modes3905