This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
Preservation of pulpal vitality is of paramount importance as the vital functioning pulp is capable of initiating a unique reparative capacity. The present study aimed to evaluate and compare four regenerative materials for pulpotomy in primary molars.
This in vivo study included a total of 120 primary molars from 30 healthy children aged 3–9 years for regenerative pulpotomy procedure. The teeth were then divided by the lottery method (chits with names of materials on it) into four groups so that each child received all four of the regenerative materials; Group 1: Biodentine (BD)™, Group II: Mineral Trioxide Aggregate Plus (MTA Plus™), Group III: Retro MTA (Retro MTA ®), and Group IV: Calcium Enriched Mixture (CEM) cement. All the primary molars (1 st/2 ndmolars) were evaluated clinically and radiographically at 6, 12, 18, and 24 months. Data were subjected to the statistical analysis using the Chi-square test. The level of significance was considered as P < 0.05.
Clinical evaluation showed 100% success with BD™ and CEM cement; whereas 96.2% success was seen with MTA Plus™ and Retro MTA ®. On radiographic evaluation, MTA Plus™ and CEM cement showed 96.2% success, whereas BD™ and Retro MTA ®showed 92.59% success rate.
All four regenerative materials showed high success in the pulpotomy of primary molars.
Retaining primary molars is of prime requisite for mastication, preserving arch length, growth of jaws, and also protect from developing oral habits. Hence, essential pulp treatment focus to treat reversible pulpal injuries, in which tooth is affected by caries, injury, or any restorative procedures. Pulpotomy is as yet comprehensively performed treatment for cariously involved pulp in asymptomatic primary molars.
Pulpotomy materials are classified according to devitalization, preservation, and regeneration. Formocresol a devitalizing agent used for pulpotomy was introduced by Sweet in 1932. It was a successful material with some disadvantage. There has been the plenty of literature about the suitability and well-being of utilizing this aldehyde-based material in pediatric dentistry.
Since the introduction of mineral trioxide aggregate (MTA), there has been a keen interest in regenerative endodontics.
Although MTA has been used extensively, the material has some inherent limitations that include high solubility, difficult handling characteristics, presence of toxic elements in the composition, higher cytotoxicity in its freshly mixed state (ISO 10993-5) (ISO 10993-3),
Biodentine™ (Septodont, Saint-Maur-des-Fosses, France) is a tricalcium silicate (Ca3SiO5) based inorganic restorative cement and is used as an alternative to MTA.
Calcium enriched mixture (CEM) cement (Bionique Dent, Tehran, Iran) is a calcium silicate-based material.
Hence, the aim was to evaluate the clinical and radiographic success of MTA-based materials (MTA Plus™ and RetroMTA ®) and compare with BD™ and CEM cement as pulpotomy medicament in deciduous molars.
In this interventional study design, normal, healthy, and cooperative children were selected from the patients attending the Department of Pedodontics and Preventive Dentistry, The Oxford Dental College, Bengaluru, India. Permission was obtained from institutional ethical review board (222/2014-15, 430/2015-16). The dental health of the child and treatment required was discussed with the parents of the children. Prior written consent was obtained from the parents for carrying out the pulpotomy procedure, and the importance of periodic follow-up visits was explained.
One hundred and twenty teeth were chosen in 30 children aged 3–9 years, who had no medical condition that would contraindicate pulp therapy. As it an open-label trial, the participants were aware of regenerative materials placed in their teeth. Four primary molars were involved in the study, thus each participant had to have at least four primary molars (first and/or second mandibular and maxillary primary molars), requiring pulpotomy. A brief history was recorded, and the teeth were exposed to the clinical examination and radiographic evaluation before the beginning of the study.
Vital primary molars with probable carious pulp exposure, absence of spontaneous pain or persistent pain, no clinical symptoms or evidence of pulp degeneration such as pain on percussion, history of swelling or sinus tracts, hemorrhage from the amputation site is bright red and easy to control and teeth that could be restored with stainless steel crowns.
Radiographic criteria: No evidence of physiologic root resorption, absence of furcal and/or periapical radiolucency, absence of internal or external root resorption, absence of pathologic root resorption.
Group I: BD™ (Septodont, Saint-Maur-des-Fosses, France) Group II: MTA Plus™ (MTA-P) (Prevest Denpro, Avalon Biomed Inc., Jammu, India; lot. 41001) Group III: RetroMTA®, (R-MTA) (BioMTA, Seoul, Korea) Group IV: Calcium Enriched Mixer cement (CEM cement
®, BioniqueDent, Tehran, Iran).
A conventional pulpotomy procedure was performed on the selected teeth. Following the administration of local anesthesia (LOX 2% adrenaline 1:200,000, 30 ml, NEON laboratories limited, Mumbai, India) rubber dam (GDC rubber dam kit, GDC Fine Crafted Dental Pvt Ltd.) isolation was carried out. All dental caries and overhanging enamel were removed with a No. 330 FG high-speed small diamond bur (0.9 mm Diameter, 2.8 mm Length, Midwest® Dentsply Sirona) with water spray. Removal of all carious dentin was carried out. A sterile No. 4 RA (diameter 1.4 mm, length 1.4 mm DENTSPLY) or 8 RA (diameter 2.3 mm, length 2.3 mm DENTSPLY) round slow-speed diamond bur was used to remove entire coronal pulp. The pulp stumps were excised until the canal orifices seen clearly with no tags remaining on the pulpal floor. Irrigation of the pulp chamber was done using normal saline. After completion of the amputation, hemorrhage was controlled within 3–5 min using slightly moistened cotton pellets placed against the pulp stumps at the orifices of the root canals.
In group I, BD™ (Septodont, Saint-Maur-des-Fosses, France) five drops of liquid from the pipette were added to the capsule containing 0.7 g of powder, as per the manufacturer's instruction. The content of the capsule was then triturated for 30 s at 4200 rpm. A plastic carrier (provided by the manufacturer) was used to transfer the mix, to standardize the quantity of material placed. The material was condensed over the root canal orifices using an amalgam carrier and moistened cotton pellet. The pulp cavity was filled with BD™. The material was condensed lightly using a cylindrical amalgam condenser to confine the placement of the material at the root canal orifices.
In Group II, MTA Plus
™(MTA P) (MTA Plus (Prevest Denpro, Avalon Biomed Inc, Jammu, India; lot. 41,001) 1 scoop of powder was dispensed on a glass slab and 1 drop of the liquid anti-washout gel was added to the powder and mixed on a glass slab with a cement spatula. The powder/gel ratio was 2.5:1 by weight. The thick mix of MTA Plus™ was then placed at the root canal orifices using a plastic filling instrument and condensed lightly using an amalgam cylindrical condenser.
In Group III, RetroMTA
®(R-MTA) (BioMTA, Seoul, Korea) the cap was opened and 0.3 g of powder from the pouch was dispensed into the floor of the cap. The plastic pipette was cut with scissors and three drops of liquid (distilled water) were added onto it. An agate spatula was used for wetting the powder with liquid for 20 s. To standardize the quantity of the material used, an MTA carrier was used to transfer the RetroMTA
®to the root canal orifices. The material was condensed with proper pressure using a cylindrical condenser to confine the material placement at the root canal orifices.
In Group IV, CEM cement (CEM cement
®, BioniqueDent, Tehran, Iran) powder and the liquid were dispensed onto a mixing pad at a ratio of 1:1 by weight according to manufacturer's instructions. Gradually, the liquid was incorporated into the powder using plastic spatula for 15–30 s to ensure that all powder particles were hydrated. More liquid was added to achieve a thick and creamy consistency. A wet gauze pad was used to cover the mixed material to prevent evaporation, hence increasing the working time. The CEM cement was carried to the root canal orifices using a plastic filling instrument and adapted to the orifices with dry cotton pellets using gentle pressure.
In all the teeth, following placement of the regenerative agents, the pulp chamber was filled with GC Miracle Mix
®(GC Corporation, Tokyo, Japan) following rubber dam removal, the occlusion was checked for high points using articulating paper. Final restoration with a stainless-steel crown (3M ESPE, Dental Products, St. Paul, MN, USA) was given following the pulpotomy procedure.
The patients were recalled for clinical and radiographic evaluation at 6, 12, 18, and 24 months. Clinical evaluation was done by noticing any signs and symptoms in the tooth treated. Radiographically, an intraoral periapical radiograph was taken for the evaluation. Radiographically, X-rays were evaluated under the X-ray viewer by three examiners and findings were noted separately for each child and each material. The examiners were aware of the materials placed. Participants were also instructed to report to the department on the development of any signs and symptoms regarding the treated teeth, during the intervening period. At the end of 2 years follow-up, 27 children were available, as 2 children relocated to other states and one child's parents did not give consent for continuing the study at 2 months period.
Statistical analysis
Data obtained were subjected to the statistical analysis using SPSS (Statistical Package for the Social Sciences) for Windows version 22.0 Released 2013. Armonk, NY, USA: IBM Corp. The Chi-square Test was used to compare the clinical and radiological parameters between different study groups at 18 months and 24 months of follow-up periods. The level of significance was set at P < 0.05.
At the end of the study period, 27 children and 108 teeth were available
A short procedural period is critical to reduce the likelihood of disruptive behavior among pediatric patients. Nowadays, newer materials which are biologically acceptable are considered superior in dentistry, as the priority has changed from preservation to regeneration. Hence, materials with better biologic properties such as improved antibacterial activity, ability to form odontoblast like cells, less cytotoxic activities and few mechanical properties like improved radiopacity, no microleakage, fracture resistant, increased shear bond strength and faster setting time has been introduced. These properties of the materials help enhance the success rate of the treatment done in primary teeth. In present study, regenerative materials like BD
™MTA-based cements (MTA Plus
™, Retro MTA
®) and CEM cement
®were assessed clinically and radiographically in pulpotomy procedure. These materials have got improved biological and mechanical properties.
Pulpotomy was regarded as successful with no clinical signs and radiographic failures. The pulp in primary teeth is more cellular and has a greater blood supply which can play an important role in the success rate of pulpotomy.
In the present study, Group I (BD™) showed the clinical success of 100% during the overall study period. The absence of clinical signs and symptoms may be due to the inherent property of BD™ itself. The setting and hardening of the cement happened because of the ability of calcium silicate that has interacted with water. Tricalcium silicate mixed with the liquid component leads to the formation of a hydrated calcium silicate gel and calcium hydroxide. BD™ forms hydroxyapatite crystals at the surface. The sealing ability at the interface of the material and dentinal walls increased by these crystals. BD™ is mechanically stronger, less soluble with increased compressive strength, decreased porosity which gives a tighter seal.
BD™ also inhibits the growth of streptococcus mutans and Enterococcus faecalis. Thus, the antibacterial property of BD™ is proved to be better as compared to MTA.
Radiographically, at 18 months of evaluation period in Group I, External root resorption
Internal root resorption and external root resorption seen with biodenitne and mineral trioxide aggregate plus.
At 24 months, furcal radiolucency was observed in one tooth with the first primary mandibular molar in Group I. Furcal radiolucency was observed to occur more frequently in first primary molars, probably due to their anatomic feature such as smaller crown size and highly situated pulpal horns.
In Group II (MTA Plus™), clinical success was 100% at 6 and 12 months, whereas at 18 months, one clinical failure was observed, and the tooth was discarded. At 24 months, 96.67% success was observed wherein, one patient complained of pain and tenderness to percussion with respect to the primary second molar.
Radiographically, at 6 and 12 months, pulpotomized teeth were 100% successful. An 18-month radiographic evaluation, one tooth presented with Non perforated internal root resorption
The cause for the progress of inflammation may be assigned to various factors. Such as microbial stimulus, pulp coronal to the resorption must be partially or completely necrotic, allowing microbial antigens to invade the healthy pulp and alkalinity of the material; the calcium oxide in MTA Plus™ that forms calcium hydroxide could cause metaplasia within the pulp leading to osteoclastic activity.
In Group III (RetroMTA
®), clinical success which was observed until 18 months had suggested that the material property proved to be better clinically with the success rate of 96.7% with one failure at 24 months. The reason for the clinical success can be attributed to the short setting time, reduced the possibility of material washout, no leaching of cytotoxic substances.
Radiograph showing furcal radiolucency with molar treated with RetroMTA.
In Group IV (CEM cement), clinically, all the pulpotomized molars showed 100% success, the reason could be its antibacterial activity of cement. CEM cement has a 0.5–2.5 μm fine particle which is smaller than the diameter of a dentinal tubule (2–5 μm). Therefore, they can seal the dentinal tubules by providing hydraulic tree by going into tubules and a high local pH which can also result in more effective antibacterial activity.
CEM cement as pulpotomy agent shows reduced inflammation
Periodontal ligament space widening with calcium enriched mixture cement.
At 24 months of the evaluation period widening of the periodontal space was observed in one of the second primary mandibular molar which was considered as a sign of pulpotomy failure
Limitations that should be considered include: The children were followed up by investigators who were part of the clinical study. Even though the treated teeth were evaluated fairly according to the set study criteria, clinician bias cannot be completely excluded, whereas there was a high chance of bias while making different decisions by both the observer.
All the four regenerative materials can be successfully used as pulpotomy agents in primary teeth.
Financial support and sponsorship
Nil.
Conflicts of interest
The authors of this manuscript declare that they have no conflicts of interest, real or perceived, financial or nonfinancial in this article.