This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
Periodontitis, the second most common reason for tooth loss in adults, is a chronic inflammatory condition that increases the prevalence of cancer by inhibiting apoptosis and promoting tumor cell growth. However, it is still debatable if tooth loss is an important risk factor in oral cancer (OC). The aim of this systematic review is to analyze the relationship between tooth loss and the probability of developing head-and-neck cancer and also to see if there is an association between tooth loss, periodontitis, and the risk of OC.
Studies that depicted a link between tooth loss and OC (till 2017) were searched from online databases accompanied by a thorough manual search of relevant journals. Data were collected from eligible studies, and meta-analysis was carried out using the Meta-Analysis software. The effect of various inclusions was assessed by sensitivity and subgroup analysis. Publication bias was also evaluated.
The meta-analysis consisted of 15 publications. When the number of teeth lost was counted, there was significant variability (I2 = 98.7%, P = 0.0001). When more than 15 teeth were missing in a subgroup analysis, there was a 2.4 times greater risk of OC (odds ratio: 2.496, 95% confidence interval [CI] = 2.067–3.015, P = 0.001) with no heterogeneity (I2 = 0.00%, 95% CI for I2 = 0.00–68.98). Subgroup analysis revealed that there was no evidence of publication bias.
It was concluded that tooth loss can increase the OC risk by nearly 2 folds. However, large-scale population-based studies are needed to substantiate the findings.
Periodontal disease is an inflammatory disorder of the supporting tissue of teeth caused by the microorganisms that cause progressive destruction of the periodontal ligament and alveolar bone leading to periodontal pocket formation, clinical attachment loss, and gingival recession. It is the most common chronic inflammatory disease affecting the tissue around the teeth.
Tooth loss is a multifactorial process involving dental caries, periodontal disease, and a variety of socio-environmental factors such as socio-economic status, educational level, and general health status.
Initial attachment loss, loss of bone height, and smoking significantly increase the incidence of tooth loss.
Carcinogenesis has been linked to persistent inflammation in the mouth cavity and the subsequent mobilization of inflammatory mediators to distant regions in the human body in some cancers. Another research has linked it to a direct carcinogen caused by periodontitis-associated bacterial species, either immediately in oral cells or by migrating from the mouth.
Furthermore, there is still limited evidence about carcinogenic pathways triggered by a handful of the subgingival species identified in tumorous tissue. Only studies that examined and quantified tooth loss or periodontitis as a possible risk element for carcinogen in humans were included as well as research that evaluated potential confounding factors are included in this review. Hence, the aim of our meta-analysis is to conduct a literature study and use meta-analytic tools to assess the link between tooth loss, periodontitis, and the risk of OC.
Reporting format
This systematic review and meta-analysis were carried out in accordance with the Meta-analyses of Observational Studies in Epidemiology statement and were registered under the ID (ID-CRD42019123983) with the International Prospective Register of Systematic Reviews.
Focused question
On the basis of the Population, Intervention, Control, and Outcome principle, the following question was formulated. “Do the patients with tooth loss (population) when observed (intervention) in comparison to patients without tooth loss (control) exhibit risk of OC (outcome)?”
Search strategy
In order to find related papers online, databases MEDLINE (PubMed), Google Scholar, and Cochrane Library combined with a thorough handsearch of relevant journals and gray literature were searched from the year 1989-28/12/2018. A wide-ranging search strategy was undertaken to identify as many related studies as feasible. Bibliographies of published papers were also reviewed. For MEDLINE, the search strategy used the following keywords and “MeSH Term” (“Oral cancer” [MeSH Terms]) OR (“Oral malignancy” [MeSH Terms]) AND (“Tooth loss” [MeSH Terms] OR (“Missing teeth [MeSH Terms]”) AND (“Periodontal disease” [MeSH Terms]) OR (“Periodontitis” [MeSH Terms]) if the database search engine enabled this. The following key terms were used for Google Scholar and Cochrane library to identify the articles “oral cancer” OR “oral malignancy” AND “tooth loss” OR “loss of teeth” OR “missing teeth” AND “periodontal disease” OR “periodontitis.” A combined as well as individual search strategy was employed to screen all the relevant articles.
Screening and study selection
The results of the numerous database searches were aggregated, and duplicate articles were deleted. Additional papers were discovered by looking through the bibliographies of the retrieved articles. Two reviewers (NG and SR) independently selected references on the basis of titles and abstract on the association between tooth loss and OC risk. The differences in their opinion interpretation were evaluated by kappa statistics. To resolve disagreements at this stage, the third reviewer (AK) was consulted. The full text of the articles was then reviewed and the discrepancies at this point were resolved by the fourth reviewer (VL).
Inclusion criteria
Studies involving human participants.
Studies published in English language.
Case-control studies involving individuals diagnosed with OC.
Exclusion criteria
At the title phase, studies that included tooth loss with cancer other than oral cavity, in vitro studies, animal studies, case reports and case series, cohort studies, reviews, and meta-analyses were excluded.
After assessing each of the ten abstracts, the readers were standardized through discussion sessions.
Data extraction
Two independent researchers (NG and SR) extracted information from each eligible paper. The following are the data gathered from each publication: “author's name, publication year, country, number of cases (with OC) and controls (without OC), mean, standard deviation or range of age, follow-up period, and definition of reference group. The discrepancy was resolved through agreement by all the authors.”
Data analysis
We calculated a pooled odds ratio (OR) of tooth loss among individuals with OC in comparison to those without OC and relevant 95% confidence interval (CI) by using the Comprehensive Meta-Analysis software, OpenMeta[Analyst](OpenMetaAnalyst: Wallace, Byron C., Issa J. Dahabreh, Thomas A. Trikalinos, Joseph Lau, Paul Trow, and Christopher H. Schmid. “Closing the Gap between Methodologists and End-Users: R as a Computational Back-End.” Journal of Statistical Software 49 (2012): 5 to obtain the forest plots and to evaluate heterogeneity of the included studies.
Heterogeneity was measured as the percentage of variation across samples due to confounding variables. Cochrane's Q and I2 statistics were used to examine levels of heterogeneity. Q-tests for analysis of variance were employed to see if confounding variables accounted for variance within effect estimates for pooled effect sizes with significant heterogeneity. We determined the potential contribution of each study to the heterogeneity using sensitivity analyses. Effect on summary estimates was assessed from two models including and excluding such study.
Study selection and characteristics
The design, criteria, and evaluation techniques of the studies included in this systematic review and meta-analysis differed substantially. To draw conclusions from the available studies, several criteria were taken into account. Search strategy identified 132 potential studies from different databases. An average of 132 articles were found using the search method with 132 coming from PubMed. Following the removal of duplicates, 51 articles were chosen for further screening, out of which 20 were excluded as they did not answer our focused question and 16 were excluded as they were published in other languages, and finally, 15 articles were chosen for qualitative and statistical analysis. The article published between the years 1989 and 2017 were considered and 15 articles were finally enrolled in the meta-analysis. The details of the identification, screening, and methodology of the selection according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines are presented in Flow diagram of study selection process according to PRISMA guideline. PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-analyses
Tooth loss and risk of oral cancer
A total of 29303 participants (10439 cases and 18864 controls) were included in the 15 researches exploring the association between tooth loss and risk of OC. The pooled results indicated that patients with OC risk significantly increased in people who had lost teeth (fixed effect model OR = 1.35, 95% CI = 1.260–1.445, P < 0.001) with any number of teeth lost. However, substantial heterogeneity was observed when the number of teeth lost was varied (I2 = 98.7%, P < 0.0001).
Hence, the subgroup analysis was performed to check the stability of the primary outcome where we analyzed the studies that reported the minimum number of teeth lost to be 15. Six studies were finally selected. Consistent results were demonstrated in subgroup meta-analysis, and it demonstrated a 2.4 times increased risk of occurrence of OC when more than 15 teeth were missing (OR: 2.496, 95% CI = 2.067–3.015 and P < 0.001) with no heterogeneity (I2 = 0.00%, 95% CI for I2 = 0.00–68.98)
Forest plot
The results on the impact of tooth loss as a consequence of periodontal disease in a risk of occurrence of OC in this meta-analysis were supported further by the forest plots in Forest plot of the studies showing association between tooth loss and OC risk. OC: oral cancer
The horizontal axis (X-axis) of the forest plot represents the standardized mean differences, whereas the vertical line in the picture represents the “lines of null effect,” or no significant difference was found between tooth loss, periodontal disease, and mouth cancer risk. The average impact sizes for OC are represented by the square symbol inside the bottom-most row of the corresponding forest plots. The horizontal line that runs across the square symbol represents a 95% confidence interval for the average impact size. Each diamond symbol in the forest plot represents the total or combined effect size for all of the studies. It is worth noting that the two studies with significant effect sizes and possible outliers were excluded from the analysis, but no significant difference in the final result was found.
Publication bias
Begg's funnel plot and Egger's test were both used to assess publication bias for each of the articles included in this meta-analysis. The results of subgroup analysis show that there is no evidence of biasness in the link between missing teeth and the risk of mouth cancer Funnel plot of the studies showing association between tooth loss and oral cancer risk
OC is the 15th most diagnosed malignant carcinoma with an incidence rate of 3.9/100,000.
More recently, several studies have indicated a correlation between periodontal disease, tooth loss, and OC. In our meta-analysis, the tooth loss proved to be the risk factor for OC (OR = 1.35, 95% CI = 1.260–1.445, P < 0.001).
It was first brought to the attention of dental practitioners by Seymour et al., 2010,
We searched the open published studies related to tooth loss, periodontal disease, and OC risk. We found total 15 case–control studies in our present meta-analysis. We found the presence of significant statistical heterogeneity across the selected studies in the present meta-analysis (I2 = 99.8%, P < 0.05) when we considered outcome for any number of teeth. The reason behind the heterogeneity is due to variations in the area or country of study being carried out, sample size, age, and gender difference. Hence, the subgroup analysis was carried out to substantiate the degree of risk of causing OC when more than 15 teeth were missing. Subsequently, we found no evidence of heterogeneity across the studies and no evidence of publication bias. Our results indicated that the increase in the number of tooth loss (i.e., more than 15 teeth missing) can further upsurge the OC risk by nearly 2.4 folds.
The main strengths of this meta-analysis are the absence of heterogeneity of risk estimates across the studies, the absence of evidence of publication bias, and the clear evidence demonstrating that there is an increased risk of occurrence of OC with increase in number of teeth lost.
Although we have done this meta-analysis with precaution, some limitations in our current meta-analysis need to be recognized. The relatively small number of published research, the use of varied study methods, and differing definitions of tooth loss and periodontal outcomes across the studies are the key drawbacks. The second limitation is that we have only considered more than 15 teeth lost in our subgroup analysis. A different number of teeth lost might have shown a difference in the risk estimates. In summary, available evidence from this meta-analysis points to an association between tooth loss, periodontal disease, and OC.
Implication: This study shows an increase in the incidence of OC in individuals with tooth loss. However, we cannot conclude in this meta-analysis that loss of tooth could be a risk factor for OC due to substantial variability between studies and mixed findings in between case–control studies.
Our meta-analysis shows that tooth loss is related independently to its harmful increase in OC risk. Our results highlight the fact that increasing the number of tooth loss in periodontitis can be detrimental to our health. Although current evidence suggests a link between tooth loss, periodontal disease, and OC, large-scale population-based association research is needed in future to determine whether tooth loss has a role in increasing the prevalence of OC.
Financial support and sponsorship
Nil.
Conflicts of interest
The authors of this manuscript declare that they have no conflicts of interest, real or perceived, financial or nonfinancial in this article.