This is an open access article distributed under the terms of the Creative Commons Attribution NonCommercial ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non commercially, as long as the author is credited and the new creations are licensed under the identical terms.
Curcumin is the most active compound in turmeric. It can suppress the nuclear factor kappa-light-chain-enhancer of activated B cells pathway and prevent the osteoclastogenesis procedure. This study aimed to be the first to evaluate the effect of curcumin on the rate of orthodontic tooth movement (OTM).
Forty rats were used as follows in each group: (1) negative control: Did not receive any appliance or injection; (2) positive control: received 0.03 cc normal saline and appliance; (3) gelatin plus curcumin (G): Received 0.03 cc hydrogel and appliance; and (4) chitosan plus curcumin (Ch): Received 0.03 cc hydrogel and appliance. They were anesthetized and closed nickel-titanium coil springs were installed between the first molars and central incisors unilaterally as the orthodontic appliance. After 21 days, the rats were decapitated, and the distance between the first and second molars was measured by a leaf gauge. Howship's lacunae, blood vessels, osteoclast-like cells, and root resorption lacunae were evaluated in the histological analysis. Data were analyzed by one-way ANOVA, Tukey's test, and t-test (P < 0.05 consider significant).
No significant difference was found in OTM between groups delivered orthodontic forces. Curcumin inhibited root and bone resorption, osteoclastic recruitment, and angiogenesis significantly.
Curcumin had no significant inhibitory effect on OTM. While it had a significant role on decreasing bone or root resorption (P > 0.05).
Orthodontic tooth movement (OTM) is characterized by simultaneous modeling and remodeling processes in the periodontal apparatus. Coupled collaboration of osteoclasts and osteoblasts is the main feature here. The remodeling process involves cutting or filling cones. Previous bone was resorbed by osteoclasts activity and osteoblasts substitute these areas by forming new bone. The rate of bone remodeling can be controlled by local or systemic conditions. Endocrine regulation can control it systematically; however, inflammatory cytokines or local regulatory systems have a more site-specific role. The receptor-activator system of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) ligand has a significant regulatory effect on the bone remodeling procedure through the interaction of receptor activator of nuclear factor-kappaB ligand (RANKL)/RANK/ and osteoprotegerin.
Fixed orthodontic treatment is a time-consuming procedure that may lead to bad cooperation from the patient, higher caries occurrence, root resorption, and undesired tooth movement like anchorage loss. Several modalities can be used to decrease treatment time and accelerate tooth movement. These include low-level laser therapy, electrical currents, pulsed electromagnetic fields, distraction osteogenesis, corticotomy, mechanical vibration, and using drugs, synthetic cytokines, or growth factors.
Curcumin is a novel therapeutic ingredient. It is the most active compound in turmeric, which is a herbal rhizome of the Zingier family and is also known as Curcuma longa. Turmeric is used as a spice and medicine in India and China.
This study aims to be the first to evaluate local administration of curcumin on the OTM rate. Biocompatible hydrogels (4% w/v chitosan and 10% w/v gelatin) were used as the local drug-delivery system to provide sustained release of curcumin, with a hydrophobic feature, in the rat's physiologic environment.
Chitosan (medium molecular weight, degrees of deacetylation: 75%–85%) was purchased from Sigma-Aldrich Chemie GmbH, gelatin from Sigma-Aldrich (FLUKA), twin 80 from Sigma-Aldrich (Germany), curcumin (99% pure) from SBU Medical Drugs Institute, and acetic acid and methanol from Merck (Germany). Citric acid, high-pressure liquid chromatography-grade acetonitrile, sodium hydroxide, and methanol were purchased from Merck (Germany).
Chitosan hydrogel preparation
pH-sensitive and mucoadhesive chitosan directly undergo gelation in physiological pH (7.4), but it has poor water solubility. To prepare an in situ injectable hydrogel, acetic acid in a double-distilled water solution (1% v/v) was prepared, its pH adjusted to 6.8 with 1N NaOH. The chitosan powder was then added gradually to the solution –0.1 mg every 5 min – using ultrasonic (CENTIC, China CT-4653) to achieve a homogeneous chitosan solution. After reaching the desired chitosan percentage, the process was stopped. According to the procedure, six chitosan solutions (2%, 3%, 4%, and 6% w/v) were prepared. Increasing the pH in each solution to 7.4 led them to undergo gelation.
Gelatin hydrogel preparation
Gelatin solutions of 4% and 10% w/v were also prepared using double-distilled water. Subsequently, already prepared 1% w/v chitosan solution was added to each to increase the mechanical properties of gelatin hydrogels. According to the previously reported method,
Curcumin nanoparticle and emulsion preparation and loading
To obtain higher bioavailability and water solubility, curcumin was fully dissolved in methanol (96%) using a magnetic stirrer (Eppendorf, Germany). It was then left to evaporate the whole methanol in an oven (Heraeus, UK). The process was triplicated to achieve nanocurcumin particles. Curcumin powder was then added to twin 80, and this was sonicated for 2 h.
Afterward, a curcumin emulsion containing the desired curcumin concentration was prepared. The same concentration of each gel was loaded during sonication over 24 times for 30 min, over a period of 12 h.
In vitro tests
Curcumin release
To use optimized-releasing hydrogel, in vitro curcumin release studies were carried out using a dialysis method for six randomly selected hydrogels. In the next step, 1 ml of each gel was placed in a dialysis bag (D9527, Sigma), and then in 100 ml of a mixed methanol, double-distilled water solution (50:50 v/v).
Swelling ratio and water uptake
The hydrogel swelling ratio was calculated using standard methods.
Hydrogels were successfully prepared at room temperature, using both physical and chemical cross-linking procedures. To make a systematic comparison in the release profile for the releasing potential of hydrogels, optimization was done using different ingredient-material percentages. Afterward, in vitro and in vivo release profiles were recorded. Subsequently, two optimized hydrogels were prepared for injection.
In vitro curcumin release
The release profiles of six randomly selected hydrogels are recorded in
Release percentage (mg/ml) diagrams of each prepared hydrogel in
In vivo studies and orthodontic tooth movement
This study was designed as a single-blind, split-mouth experiment on 40 male Wistar rats (SCL, Shizuoka, Japan). Based on conservative estimation from previous studies,
The first group was the negative control (NC) group. It did not receive any orthodontic appliances or gels. These animals were just anesthetized during the study. The positive control (PC) group received 0.01 cc phosphate-buffered saline and an orthodontic appliance. The group that received gelatin plus curcumin (group G) received a 0.03 cc gelatin base gel containing a 50% weight of curcumin, and the fourth group (Ch) received a 0.03 cc chitosan base gel containing 50% of the weight of curcumin. 50% w/v curcumin was loaded onto selected, optimized chitosan (4% w/v), and gelatin (10% w/v). Hydrogels prepared for the injection were filtered before gelation and the loading process (Millex-GV, Millipore, USA).
At first, each rat was weighed by a digital scale (Shimadzu, Kyoto, Japan, 61189). They were anesthetized intraperitoneally using 20 mg/kg of 10% ketamine hydrochloride (Alfasan, Woerden, Holland) and 2 mg/kg of 2% xylazine (Alfasan, Woerden, Holland) injection through an insulin syringe. After anesthesia, the rats were monitored for their vital signs. In addition, to prevent pulmonary edema, they were rotated from side to side every few minutes. The room temperature was also controlled adequately. Nickel-titanium (NiTi) closed coil springs (American Orthodontics NiTi closed coil, 010 × 030 inch, 9 mm/Eyelet) were used as the orthodontic appliance for tooth movement. They were ligated between the first molars and central incisors using a stainless steel ligature wire (0.01 inch, 3M, Unitek, Monrovia, CA, USA) and fixed by a light-cured flowable composite (DenFil Flow, Vericom co., Korea)
Closed nickel-titanium coil was installed between incisors and first molars to provide tipping movement.
The maxilla was removed and sent for histological evaluations. They were fixed in 10% formalin for 10 days and then decalcified in 10% formic acid for 15 days. The specimens were exposed to an incremental concentration of alcohol and methyl salicylate. Finally, they were embedded in paraffin blocks. Histological specimens were prepared in the parasagittal direction and cut in 4–6 μm thickness by a microtome (LEICA, Wetzlar, Germany). They were stained by hematoxylin and eosin and inspected with a light microscope (Eclipse E400, Nikon, Japan) by an experienced pathologist blind to each allocated specimen. The amount of Howship's lacunae, blood vessels, osteoblast-like cells, and number and area of root resorption lacunae were assessed. In addition, histomorphometric analyses were performed on the specimens' photographs in 10X and 40X magnifications, which were taken by a camera (E8400, Nikon, Japan). Each specimen was evaluated three times and the mean value was reported as the final measure.
The collected data were statistically analyzed using Statistical Package for the Social Sciences (SPSS) software (version 21, IBM, Armonk, New York, USA). One-way ANOVA, Tukey's tests, and t-tests were used in this regard.
In vivo releasing rate evaluation
After 21 days, three rats were selected randomly from each group that was administered curcumin to evaluate the systemic release rate. They were anesthetized by inhalation of chloroform and their thoraxes were excised by a surgical blade and a pair of scissors. Blood samples were collected by a 5 cc sterile syringe from the apex of the left ventricle even though the rats were alive. The blood samples were then centrifuged, and their plasma was kept in Safe-Lock Microcentrifuge tubes (Eppendorf, Hamburg, Germany) at −80°C for 24 h in a deep freezer (New Brunswick scientific, U570-86, UK).
High-pressure liquid chromatography assay and quantification of curcumin in plasma
Curcumin extraction and sample preparation were performed as previously reported.
Curcumin quantitation was achieved without any internal standard and using (L-7420 UV-VIS Detector, Hitachi, Tokyo, Japan) a C25 column, citric acid buffer adjusted to pH: 3 (35%) and acetonitrile (65%) prepared as a mobile phase, while the flow rate was 0.6 ml/min.
In vivo study
Orthodontic tooth movement
Diagram of weight change of each group during the study.
Histological analysis
Histologic micrographs. (a) There is sagittal segment of molar root with root resorption (×10). (b) There is magnified zone of root resorption in cellular cementum and root dentin also Howship lacunae can be seen (×40). (c) There is a multinucleated cell (shown by arrow) in the root resorption lacunae (×100). a - dental pulp, b - cellular cementum, c - periodontal ligament with fibrous Sharpey's fibers, d - root resorption lacuna, e - alveolar bone, f - dentine, g - blood vessel.
Howship's lacunae
After 21 days, the NC group did not show any Howship's lacunae. However, there were moderate to severe lacunae in the PC group with an active orthodontic force. In contrast, the G and Ch groups had significantly lower Howship's lacunae compared to the PC group. (P < 0.05).
Blood vessels
The PC group exhibited more blood vessels in the field compared to the NC group. Statistical analysis revealed that the G and Ch groups had significantly lower vessel counts than the PC group (P < 0.05).
Osteoclast-like cells
The NC group showed almost no osteoclast increment. However, a mild-to-moderate increase was observed in the PC group. In groups that were administered curcumin, there was a mild increase in the number of osteoclast-like cells. The number of osteoclasts was in agreement with Howship's lacunae. The more the number of osteoclasts there were, the more Howship's lacunae were observed. The PC group had a significant difference compared to the G and Ch groups (P < 0.05).
Root resorption
There was almost no root resorption in the NC group. Mild-to-moderate root resorption was seen in the PC group, along with active orthodontic force application. In the G and Ch groups, there was significantly lower root resorption compared to the PC group (P < 0.05).
The extent of the area of root resorption was nearly similar between the groups that were administered curcumin and the PC group.
High-pressure liquid chromatography results
In vivo curcumin release
To quantify the curcumin remaining in rat blood, blank plasma, and curcumin spike blank plasma were prepared for testing at the beginning. As shown in
High-performance liquid chromatography analysis of curcumin (μg/ml) in rat plasma: (a) Blank plasma, (b) Curcumin spike blank plasma, (c-e) Chitosan group samples, (f-h) gelatin group samples.
The curcumin spike blank plasma was also tested to ensure the exact curcumin pike in chromatography of the rat samples
Test samples chromatograms recorded as
As can be seen in the C–E chitosan group samples, curcumin was detected and quantified in the range of 100 μg to 1 mg/ml (closer to 100 μg). In the F, G, H samples that pertained to the gelatin group, curcumin was detected in 100 μg/ml, ≤… ~100 μg/ml, and <100 μg/ml, respectively.
The bone remodeling process is the coupled procedure between bone resorption by osteoclasts and bone formation through osteoblasts.
OTM depends on bone remodeling, which is time-consuming. It is important to consider probable side effects like anchorage loss or an uncooperative patient. Anchorage control is the more important concern given the increasing number of adult orthodontic patients in recent decades.
In this study, we found no significant difference between OTM of the PC and drug-administered groups. In evaluating the effect of curcumin on the OTM, the PubMed, Google Scholar, and Science Direct databases were searched and no related article found in this regard. Therefore, it should be considered that the explanation of the results is based on the curcumin effect on bone remodeling.
Ozaki et al. explained that curcumin has a dose- and time-dependent influence on the osteoclast apoptosis, which lead to significant bone resorption inhibition.
Other studies indicated a bone preservative effect of curcumin in an osteoporotic condition, such as during menstruation or after ovarectomy.
A probable explanation for this result can be attributed to the controversial effect of curcumin on bone formation. Moran et al.
Histological analysis
Howship's lacunae
Note that the NC group had no orthodontic appliances; therefore, they did not show any Howship's lacunae. However, the PC group exhibits higher bone resorption in comparison to the G or Ch groups, which showed mild severity.
It seems that administering curcumin can decrease bone resorption significantly compared to the PC group. Therefore, the bone preservative effect of curcumin can promise effective anchorage control on using this drug as a local regulator in orthodontic treatment. Although there was no significant inhibitory effect on the orthodontic treatment in this study on curcumin, it may be related to properly released drugs in the movement site. This hypothesis should be investigated in future studies.
Blood vessels
The groups that were administered curcumin showed significantly lower blood vessel counts. It confirmed the inhibitory effect of curcumin on angiogenesis.
Osteoclast-like cells
Tartrate-resistance acidic phosphatase staining is the method of interest for evaluating osteoclast cells.
No increase was noted in the osteoclastic number in the NC group. However, the PC group showed a mild–to-moderate increase. By comparing the osteoclast number between groups, a significant difference was noted between the Ch or G groups and the PC group. In this situation, it is possible to suggest that there was an agreement between the count of Howship's lacunae and the number of osteoclasts. The groups administered curcumin showed a lower count of Howship's lacunae and osteoclasts concomitantly. This confirmed the suppressive effect of curcumin on the recruitment of osteoclasts.
Keles et al.
Root resorption
The NC group did not show any root resorption, but there was a moderate count of resorption lacunae in the PC group. Groups that were administered curcumin showed almost mild root resorption, which was statistically significantly lower than in the PC group.
It may be concluded that curcumin decreases the amount of root resorption. This may be related to the suppression of inflammatory mediators by curcumin, especially IL-1.
Curcumin did not show any significant inhibitory effect on OTM. However, the practical conclusion of this study was a probable efficacy of curcumin on tooth movement. Curcumin decreased bone and/or root resorption significantly. It also reduced angiogenesis and the number of osteoclasts in the field of OTM. Therefore, it is recommended for a useful local anchorage-controlling method with minimal invasive and side effects. Future studies on this drug are suggested to investigate the effect of curcumin on OTM with a higher dose released in the area of tooth movement.
Financial support and sponsorship
Dental Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Conflicts of interest
The authors of this manuscript declare that they have no conflicts of interest, real or perceived, financial or nonfinancial in this article.