This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
The aim of the study was to evaluate the adhesion of Scotchbond Universal Adhesive to primary tooth dentin by measuring shear bond strength (SBS) and observing morphological changes with scanning electron microscopy (SEM).
In this in vitro study, a total of 60 primary canine teeth were randomly divided into 5 groups (n = 12). The study groups were (1) Phosphoric acid etching + Adper Single Bond 2 (control), (2) phosphoric acid etching + Scotchbond Universal (etch-and-rinse), (3) Scotchbond Universal (self-etch), (4) phosphoric acid etching + Scotchbond Universal + resin, and (5) Scotchbond Universal + resin. Composite cylinders were built on the tooth surface, and 10 samples in each group were selected for SBS testing and identification of the failure modes. Two samples from each group were observed by SEM. One-way ANOVA and Tukey honestly significant difference post hoc test were used for data analysis P value < 0.05 was considered statistically significant.
The results showed that SBS in Group 1 was significantly lower than in Groups 2, 3, and 4 (all P < 0.001). There was no significant difference between Groups 2 and 3 (P = 0.98), or between Groups 3 and 4 (P = 0.97). There was no significant difference between Groups 2 and 4 (P = 0.999) or between Groups 1 and 5 (P = 0.156). Mixed and cohesive failures were more frequent in Groups 2, 3 and 4. SEM observations showed that applying phosphoric acid to the dentin before Scotchbond Universal adhesive resulted in more open dentinal tubules and more resin tag impregnation.
There was no significant difference in SBS between Scotchbond Universal Adhesive in etch-and-rinse and self-etching modes. The SBS of Scotchbond Universal Adhesive in etch-and-rinse mode was greater than Adper Single Bond 2.
For many years, dental adhesive systems have been used to enhance the adhesion between tooth structures and composite resins. Dental adhesives can be categorized according to the time of use (generation of calcification) or the method of use (etch-and-rinse or self-etch) and influence on the smear layer. Conventionally, the systems include etch-and-rinse adhesives applied in three steps (fourth-generation) or two steps (fifth-generation or one-bottle adhesives).
During 2011–2012, a new generation of one-bottle adhesives called “universal”, “multi-mode” or “multi-purpose” adhesives were introduced. The manufacturers recommend using the adhesive systems with two methods: (1) as an etch-and-rinse adhesive with selective acid etching before the adhesive is applied, or (2) as a one-bottle self-etching adhesive without additional etching.
Some researchers compared the sealing ability and bond strength of the two approaches using a UA for composite resin restorations in permanent teeth. Most studies showed that using phosphoric acid etching enhanced the microtensile bond strength (μTBS) of the UA to permanent enamel, especially when a mild adhesive was used.
Few studies have investigated the performance of UAs in primary teeth. One study showed that there was no significant difference between etch-and-rinse and self-etch modes when SBU was used in primary dentin,
Because few data are available on the use of UAs in primary teeth, the purpose of this in vitro study was to determine the effectiveness of a new one-step self-etch adhesive in primary tooth dentin. The adhesive was applied with two different methods: selective preetching (etch-and-rinse) and self-etching. The two methods were compared for SBS and scanning electron microscopic (SEM) morphological characteristics.
The protocol of this in vitro study was approved by the Human Ethics Review Committee of the School of Dentistry, Shiraz University of Medical Sciences (grant number# 99-10169). A total of 70 primary canine teeth extracted due to orthodontic treatment were cleaned and stored in 0.1% chloramine T solution for 4 weeks for disinfection. The aim of the study was explained to the parents, who provided their informed consent in writing. Next, the teeth were immersed in distilled water at 37°C. The tooth surfaces were examined under a stereomicroscope to rule out teeth with cracks, abrasions or caries. Finally, 60 sound teeth were selected, and the root of each tooth was sectioned transversally 2 mm below the cementoenamel junction with a water-cooled diamond saw.
Dentin block preparation
The teeth were mounted in acrylic resin with the tooth long axis perpendicular to the upper surface of the mold. Then, about one-third of the incisal edge of the occlusal surface of tooth was cut and flattened with a diamond wheel bur to provide a bonding area in midcoronal dentin. The dentin surface was smoothed with 600-grit silicon-carbide paper for 1 min under water cooling to standardize the smear layer. After ultrasonic cleaning, rinsing and drying, all specimens were carefully checked under a stereomicroscope (Motic K, Wetzlar, Germany) to verify that the dentin surface was intact without pulp exposure.
The teeth were stored in wet conditions for 24 h. Then, the samples were randomly divided into five groups containing 12 teeth each, in which dentin pretreatment was performed before SBS was measured.
Group 1 (control): Phosphoric acid etching (3M, ESPE, St. Paul, MN, USA) +Adper Single Bond 2 (3M, ESPE) Group 2: Phosphoric acid etching + Scotchbond Universal Adhesive(3M, ESPE)(etch-and-rinse) Group 3: Scotchbond Universal Adhesive (self-etching) Group 4: Phosphoric acid etch + Scotchbond Universal Adhesive + resin layer Group 5: Scotchbond Universal Adhesive + resin layer.
The composition of the materials and instructions for use are shown in
After the adhesive was applied, 10 samples in each group were selected for SBS testing and identification of the failure modes. A rubber cylindrical mold 3 mm in internal diameter and 3 mm in height was used to bond the composite resin to the dentin. The cylinder was filled with composite resin (Z250, 3M, ESPE, St Paul, MN, USA) with an incremental technique. Each 1.5 mm layer was polymerized for 40 s with a halogen light-curing unit (Coltolux, Coltène/Whaledent AG, Altstätten, Switzerland) at a power density of 550 mW/cm 2. Then, the specimens were stored in humid conditions at 37°C for 24 h. SBS was measured with a universal testing machine (Zwick-Roell, Zwick, Ulm, Germany). Shear load was applied using a knife-edge blade at a crosshead speed of 1 mm/min until failure occurred. The peak load at failure was recorded and divided by adhesive surface area to obtain SBS in megapascals (MPa). The type of bond failure of the fracture was evaluated by two observers under blind conditions with a digital microscope (Dino Lite, Taipei, Taiwan) at ×25 magnification and was recorded as follows:
Adhesive fracture at the composite-dentin interface Cohesive fracture in the substrate, that is, dentin Mixed fracture with both adhesive and cohesive fracturing.
Scanning electron microscopy observation
Two prepared samples were selected from teeth in each experimental group for SEM evaluation. The specimens were sectioned perpendicular to the adhesive interface and polished with 400, 600, 1000, and 2000 grit silicon-carbide papers under water cooling. The teeth were rinsed, and the sectioned surfaces were treated with 37% phosphoric acid for 10 s, rinsed for 30 s, and immersed in 5% NaOCl for 2 min. After rinsing, the specimens were dehydrated in a series of 70%, 80%, 90%, and 99% ethanol. Then, the samples were sputter coated with gold in a vacuum evaporator. Micromorphological changes were examined in a scanning electron microscope (KYKY-EM3200, Shanghai, China) at ×500 and ×1500 magnification.
Statistical analysis
One-way ANOVA was used to compare the mean SBS in different groups. Multiple comparison analyses were done with the Tukey honestly significant difference post hoc test. Before ANOVA, the normality assumption was verified with Kolmogorov–Smirnov test, which showed that the distribution of values for the SBS variable is normal in all groups (all P > 0.05). P value < 0.05 was considered statistically significant.
There were significant differences in SBS between all five groups (P < 0.001). Pairwise comparisons showed that mean SBS in Group 1 (control) was significantly lower than in groups 2, 3, and 4 (all P < 0.001). There was no significant difference between Groups 2 and 3 (P = 0.98) or between Groups 3 and 4 (P = 0.97). There was no significant difference between Groups 2 and 4 (P = 0.999) or between Groups 1 and 5 (P = 0.156). Mean SBS in Group 5 was significantly lower than in Group 2 (P = 0.025) and Group 4 (P = 0.029). However, there was no significant difference between Group 5 and Group 3 (P = 0.131).
The results for failure mode showed that cohesive and mixed fractures were the most frequent fracture modes in Groups 2, 3, and 4.
Scanning electron microscopy evaluation
All samples in which dentin was pretreated with phosphoric acid etching had the same micromorphological characteristics. Acid etching led to the removal of more minerals, with more open dentinal tubules and an irregular surface
Scanning electron microscopy images of primary tooth dentin: phosphoric acid etching and application of Adper Single Bond 2 (A1and A2), phosphoric acid etching and application of Scotchbond Universal adhesive alone (B1 and B2), Scotchbond Universal adhesive with self-etching (C1 and C2), phosphoric acid etching and Scotchbond Universal adhesive with a resin layer (D1 and D2), or Scotchbond Universal adhesive (self-etching) with a resin layer (E1 and E2) (500×, 1500×). Dentin (D), Composite resin (C), Resin tag (R), LB (Lateral branches).
We investigated the effect of prior phosphoric-acid etching on the SBS of a multimode adhesive in primary tooth due to differences between primary and permanent dentin, which the former is more reactive to acidic conditioner. Our results can help guide pediatric dentists who need to decide whether to use a UA in etch-and-rinse or self-etch modes.
Our data showed that the SBU system in both etch-and-rinse and self-etch modes led to greater SBS than the use of a two-step etch-and-rinse bonding agent (Adper Single Bond) commonly used by dentists. Some previous studies reported similar or better performance of the UA compared to the two-step etch-and-rinse bonding agent.
We found no significant difference in the SBS of SBU between self-etching and etch-and-rinse modes. This is in agreement with a previous study in sound permanent dentin.
Scotchbond Universal Adhesive has low-technique sensitivity and is an ultra-mild self-adhesive (pH 2.7) that contains water and the hydrophilic monomer (hydroxyethyl methacrylate).
We used SEM images to observe morphological changes in the interface after different methods of dentin surface treatment. Our SEM findings were consistent with the SBS results in all experimental groups. Compared to the two-step total-etch adhesive method (Group 1), applying SBU in etch-and-rinse mode led to more resin tags and resin impregnations beyond the hybrid layer, and greater micromechanical interlocking, all of which influence bond strength. In self-etching mode, SBU led to the removal of minerals and partial exposure of the tubules. As a result, fewer resin impregnations were observed. Applying a hydrophobic resin layer did not change the surfaces prepared with SBU in either etch-and-rinse or self-etching modes, and these observations were consistent with our SBS data.
Both cohesive and mixed modes of failure were observed in SBU in both etch-and-rinse and self-etching modes, a result that agrees with previous studies. Scotchbond Universal Adhesive led to more adhesive failure when used in self-etching mode together with resin. In this connection, an earlier study reported that higher bond strength leads to a higher number of cohesive fracture failures.
In this study, we evaluated the SBS of a UA in primary dentin under laboratory conditions. This method has been used previously to assess material resistance to contraction and biting forces
The shear bond strength of Scotchbond Universal Adhesive in etch-and-rinse mode was greater than a two-step total-etch adhesive (Adper Single Bond 2). There was no significant difference in Scotchbond Universal Adhesive shear bond strength between etch-and-rinse and self-etching modes. Applying a hydrophobic resin layer did not increase the shear bond strength of Scotchbond Universal Adhesive to primary dentin.
Acknowledgments
This work was supported by the Vice-Chancellory of Research of Shiraz University of Medical Science, Shiraz, Iran, for supporting this research (grant number# 99-10169). The authors thank K. Shashok (AuthorAID in the Eastern Mediterranean) for improving the use of English in the manuscript and Dr. M. Vossoughi of the Center for Improvement, Shiraz Dental School, for the statistical analysis.
Financial support and sponsorship
This work was supported by the Vice-Chancellory of Research of Shiraz University of Medical Science, Shiraz, Iran, for supporting this research.
Conflicts of interest
The authors of this manuscript declare that they have no conflicts of interest, real or perceived, financial or non-financial in this article.