This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
The etiology of temporomandibular disorders (TMDs) is complex and associated with multiple predisposing and initiating factors. Articular eminence morphology and steep eminence inclination have been postulated as the etiological factors, but there has been no clear evidence of association of morphology of the temporomandibular joints (TMJ) complex as a probable predisposing factor in the pathogenesis of TMDs.
This was a cross-sectional, case–control study, and cone-beam computed tomography scans, and the evaluation was performed for 60 joints in 30 patients with symptomatic TMDs and for 40 healthy joints of 20 age-matched patients. One-way ANOVA, post hoc, unpaired t-test, Chi-square, and intra-class correlation coefficient test were used to determine the correlation between the TMJ articular eminence inclination, height, condylar bone changes, condyle, and fossa shapes with symptomatic TMDs. The P < 0.05 were considered statistically significant.
There was a statistically significant difference of articular eminence inclination and height with a steeper eminence inclination in the control group (P = 0.044*, and 0.035*). The condylar bone changes were found to be significantly more in the TMJ disorder group (P = 0.001*). There was no significant association of condyle and fossa shapes (P = 0.482 and 0.689) and of articular eminence inclination and height with condylar bone changes (P = 0.695, 0.498, 0.192, and 0.823) and condyle shapes (P = 0.389, 0.521, 0.260, and 0.387). The eminence inclination was not associated with fossa shapes (P = 0.471 and 0.086), but eminence height was associated with fossa shapes in the TMJ disorder group (P = 0.043* and 0.111).
The results depicted that there was no significant association between TMJ complex anatomy and TMJ disorders in the present study population.
The temporomandibular joints (TMJ) is a complex articular system which is located between the mandible and the temporal bone.
The angle formed by the articular eminence and the Frankfort horizontal (FH) plane or any other horizontal plane, such as the occlusal or palatal plane, is defined as the articular eminence inclination.
The morphology of the articular eminence, glenoid fossa, and condyle depends on numerous factors. Temporomandibular disorders (TMDs) are frequently associated with degenerative bone changes, which may occur in the subarticular surfaces of the condyle and fossa during TMJ disorders.
There are various methods which are used to examine the inclination of the articular eminence and assessment of the morphological changes, but cone-beam computed tomography (CBCT) was used in the present study to assess the TMJ morphology as owing to its higher resolution the visualization of subtle bony changes is much better than conventional techniques. Furthermore, it allows for shorter scanning time and a lower radiation dose than conventional computed tomography (CT).
It has been hypothesized that steeper articular eminence is a predisposing factor for TMDs. However, the association of articular eminence inclination and height with TMDs is a matter of controversy and needs to be further evaluated.
The study design was a cross-sectional, case–control study. The present study was conducted on patients visiting the Outpatient Department of a reputed dental college of North India after taking the Ethical Clearance from the Institutional Ethical Committee.
The study sample comprised fifty patients within the age range of 20–40 years. The sample was allocated in two groups with thirty patients in Group I (TMJ disorder group) and twenty healthy patients in Group II (Control group). CBCT scans and evaluation was performed for sixty joints in thirty patients with symptomatic TMDs in Group I and for forty healthy joints of 20 age-matched patients in Group II.
Informed consent was taken and the patients were subjected to a detailed case history of the “American Association of Orthodontics” for the analysis of TMDs and thorough clinical examination of the patients was done followed by the recording of findings. All of the patients in the Group I had clinical signs and symptoms of TMJ dysfunction, such as TMJ sounds, clicking, pain, subluxation, trismus, hypomobility, or hypermobility. Any patient with craniofacial abnormalities or any systemic conditions that may affect the TMJ, patients with a history of trauma to orofacial complex, under any systemic corticosteroids, undergoing orthodontic appliance therapy or any intervention from other previous TMJ treatment, scans with artifacts, and pregnant females were excluded from the study. The patients for control group were selected from CBCT scans, which were performed for reasons other than TMJ dysfunction. The assessment was made by three oral and maxillofacial radiologists at an interval of 2 weeks with a minimum experience of 5 years in CBCT interpretation who were blinded to eliminate the inter-observer and intra-observer bias.
Imaging procedure
The CBCT images were taken with a NewTom GiANO (CEFLA-SC, CEFLA DENTAL GROUP, ITALY) with a maximum output of 90 kvp, 3 mAs, and typical exposure time of 3.6 s, voxel resolution of 150 μ and the field of view (FOV) of 8 cm × 8 cm. The patients were made to stand in the gantry with head in the horizontal position and hence that the FH plane was perpendicular to the table.
All the CBCT scans were taken using a standard exposure and patient positioning protocol to ensure standardization. Two scout images, i.e., sagittal and coronal view were taken in accordance with the patient's position and a 360° scan was acquired afterward. The NNT software version 7.0 program (New Net Technologies Ltd. Naples, USA) was used for the analysis. The orientation and area of interest were determined in Multiplanar reformation (MPR) format. First, the condylar head was oriented and triangulated in all the three planes. Then, in axial window, the widest mesiodistal dimension of the condyle was identified which acted as the reference point for secondary reconstruction. On this plane, parasagittal and para-coronal cross-sections were created. The parasagittal sections were evaluated perpendicular to the long axis of the condyle and para-coronal cross-sections were created parallel to the long axis of condyle with slice thickness and interval of 1 mm each, respectively.
Measurements
The points used for measurements of the articular eminence inclination and heights in this study are as follows
articular eminence (a) inclination (b) height.
For each patient, the mid parasagittal section was taken up for measurement of the articular eminence inclination and height On the designated section, two points were localized; superior most point on the porion (P) and the inferior most point of the articular eminence (E). Then, a straight line joining these two points was drawn using the drawing toolbar Then, the highest point of the articular fossa (R) was marked and another line was drawn intersecting the other line joining the point (R) to the inferior most point of the articular eminence (E) The angle at this intersection depicted the articular eminence inclination and was measured using the angle toolbar of the software The eminence height was established by measurement of the perpendicular distance between the lowest point of the articular eminence and the highest point of the fossa.
The condylar bone changes were evaluated and categorized as normal, erosion, and osteophyte formation as visualized in the coronal plane
Condylar bone changes in a coronal view: (a) normal (b) erosion (c) osteophyte. Condyle shapes in a coronal view: (a) triangular (b) oval (c) flattened (d) round. Fossa shapes in a sagittal view: (a) triangular (b) oval (c) trapezoidal (d) round.
Statistical analysis
The software used for the statistical analysis was Statistical Package for the Social Sciences (SPSS) software (version 21.0. Armonk, NY: IBM Corp). One-way ANOVA test was used to compare the mean articular eminence inclination and height according to condylar bone changes, condyle shapes, and fossa shapes. Post hoc test was applied to compare the intergroup comparison of mean inclination and height according to condylar bone changes, condyle shapes, and fossa shapes. Unpaired or independent t-test was used to compare the mean articular eminence inclination and height in both the groups. A Chi-square test was used to compare the distribution of condylar bone changes, condyle shapes, and fossa shapes in both groups. Intra-class correlation coefficient test was used to evaluate the intra-observer and inter-observer variation. The P < 0.05 were considered statistically significant.
The comparison of the distribution of condylar bone changes was compared between TMJ disorder and control groups
The articular eminence inclination and height were compared in both the groups using unpaired or independent t-test
The association of articular eminence inclination and height with condylar bone changes, condyle shapes, and fossa shapes was evaluated using one-way anova
Interclass correlation coefficient for inter-observer reliability varied from 0.953 to 0.990 and for intraobserver reliability varied from 0.927 to 0.987, which suggested excellent agreement.
TMDs are the major cause of nonodontogenic pain in the oral and maxillofacial region and include various groups of disorders, which include psychological, masticatory, and muscular components with overlapping features.
The etiology of TMDs is complex and multifactorial,
The articular eminence is situated in front of the glenoid fossa and its posterior surface slope varies among people. Although it is an anatomical structure belonging to the cranium, its morphological shape is mainly influenced when it is exposed to functional load arising from chewing forces.
Articular Eminence Inclination is studied using different materials and methods as it is an important element in the biomechanics of TMJ.
It has been demonstrated that CBCT is an appropriate method for the measurements of the articular eminence and offers a dose and cost-effective alternative to conventional CT for the diagnostic evaluation of osseous abnormalities of the TMJ. The effective dose of the currently available large FOV CBCT units is higher than that of conventional panoramic imaging but several to many times lower than the reported doses for conventional CT. CBCT also allows linear measurements with real dimensions and without superimposition or distortion, which is the main concern in conventional radiography.
A pronounced steepness of the articular eminence has been suggested as a predisposing factor in the development of the TMJ disorders as with a steep articular eminence, the disk would have to rotate forward on the condyle to maintain a proper condyle-disk relationship during mandibular movements.
Apart from the articular eminence inclination, TMJ morphology is also related to TMDs. Richards
In the present study, the articular eminence inclination was greater in the control group (34.97 ± 7.69) than in patients with TMJ dysfunction (32.23 ± 7.68), and the difference were statistically significant. These results were in accordance with Sümbüllü et al.
The articular eminence height was more in the TMJ disorder group (6.30 ± 1.61) in comparison to the control group (5.66 ± 1.23), and the difference was statistically significant. Similar results were reported by Paknahad et al.
We evaluated morphological changes and observed condylar bone changes in only 28 (46.6%) of sixty joints in the TMJ disorder group, and in the control group, we observed only 1 (2.5%) joint of forty joints with condylar osteophyte formation. A significant difference was found between condylar bone changes in two groups as the occurrence of erosion and osteophyte was significantly more among the TMJ disorder group. Similarly, dos Anjos Pontual et al.
Osteophytes occur at an advanced stage of degenerative change and appear to stabilize and widen the surface in an attempt to improve the overload resulting from occlusal forces, representing areas of neo-formed cartilage, whereas erosion is the initial stage of degenerative changes, indicating that the TMJ is unstable and changes in bone surfaces will occur, probably resulting in changes in occlusion.
There was no significant difference of condyle and fossa shape between the TMJ disorder and control group. The triangular condyle shape was observed more frequently, i.e., in 24 (40%) joints in the TMJ disorder group and oval condyle shape was observed in 14 (35%) joints in the control group. Oval fossa shape was found most frequently in both the groups (41%). Our results were not in accordance with Caglayan et al.
Pirttiniemi et al.
Association of the articular eminence inclination and height with condyle and fossa morphology was also assessed and there was no association with the condylar bone changes and condyle shapes. Our results were in accordance with Caglayan et al.
In our study, we did not find any association of the articular eminence inclination with fossa shapes in both the groups. However, there was a significant association of the articular eminence height with fossa shapes in the TMJ disorder group. Our results were not in accordance to Caglayan et al.,
The reason for the variations in the results could be due to factors such as different methods of measurements, sample size, age range, and other differences between the populations. Further studies are required with a larger sample size to determine an association between TMJ complex anatomy and etiopathogenesis of specific TMD.
The present study shed light on the relationship between TMJ morphology and the incidence of TMDs. The articular eminence inclination was steeper in patients without TMJ dysfunction and thus, the steep articular eminence inclination could not be considered as a predisposing factor in etiology of TMDs in the present study population. There was increased articular eminence height in the TMJ disorder group, and it can be proposed that increased articular eminence height might be a predisposing factor in the etiology of TMDs. The condylar bone changes had an association with TMJ disorders in the present study population, and there was no association of articular eminence inclination and height with the condylar bone changes and condyle shapes. Furthermore, the articular eminence inclination had no association with fossa shapes, but eminence height was associated with fossa shapes only in the TMJ disorder group. Thus, the results depicted that there was no significant association between TMJ complex anatomy and TMJ disorders.
Financial support and sponsorship
Nil.
Conflicts of interest
The authors of this manuscript declare that they have no conflicts of interest, real or perceived, financial or nonfinancial in this article.